DRAFT ISO/IEC 14496-10 : 2002 (E)

Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG Document: JVT-G050

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

7t Meeting: Pattaya, Thailand, 7-14 March, 2003

Title:

Status:
Purpose:

Author(s) or
Contact(s):

Source:

Draft ITU-T Recommendation and Final Draft International Standard
of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC)

Approved Output Document of JVT

Text

Thomas Wiegand Tel: +49 - 30 - 31002 617
Heinrich Hertz Institute (FhG), Fax: +49-30-392 7200
Einsteinufer 37, D-10587 Berlin, Email: wiegand@hhi.de
Germany

Gary Sullivan

Microsoft Corporation Tel: +1 (425) 703-5308

One Microsoft Way Fax: +1 (425) 706-7329
Redmond, WA 98052 USA Email: garysull@microsoft.com
Editor

This document is an output document to the March 2003 Pattaya meeting of the JVT.

Title page to be provided by ITU-T | ISO/IEC

DRAFT INTERNATIONAL STANDARD
DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E)
DRAFT ITU-T RECOMMENDATION

TABLE OF CONTENTS

Filename: JVT-G050d35.doc

Foreword xi
0 Introduction xii
0.1 PFOIOQUE ...ttt h st a ettt n e ae ettt h et n e ae bttt et e b et neeaentereas xii
0.2 PUFPOSC. ... et h ettt h bRt b e E ekt e n e bt bt h e et ettt eh e et bt et eneennes xii
0.3 APPIICAIIOMNS. ... ettt ettt ettt h e et ettt ekt a b e eh e nt et ettt eat et et bt et eneeanas Xii
0.4 Profiles QRA LEVELS................ccocooveieiiiiieiieiee ettt ettt ettt ettt ettt ea et ne et ene s Xii
0.5 Overview Of the deSign CRAFACIEFISTICS..............c.ccoeeeveieeeieieieeeee ettt ettt ese et s eseeaessesseaens Xiii
0.5.1 PrediCtiVe COQINEeveuiiiieieierietei ettt ettt s b bbbt et b e st e e e bt st e be st ebesaeneene xiii
0.5.2 Coding of progressive and interlaced VIAEO0........c.cevveeirierieiiirieieiieeeeeeee e eee xiii
0.5.3 Picture partitioning into macroblocks and smaller partitionscccccceverveeeererieeneneeneneire e xiii
0.5.4 Spatial redundancy TEAUCTIONccueuirierieirieieerteie ettt ettt sttt b et neenes Xiv

0.6 How 10 read thiS SPECIfICALIONccoeiiiiiieiie ettt ettt ettt ettt ee Xiv

1 Scope 1
2 Normative references 1
3 Definitions 1
4 Abbreviations 7
5 Conventions 8
5.1 AVIERINELIC OPEFALOTS ...ttt h ettt et h ettt b et s et e b et es e eb e st es s et e eb et eseen et e st eseesensese s ensenen 8
5.2 LOZICAL OP@FALOFS ...ttt ettt ettt h e s et e a et e st ea e e st eae e b et estene s e st aees e e ese s ensenen 8
5.3 RelQUIONAL OP@FALOTS ...ttt ettt ettt e a e e et b e e et e ae e b e e b e eae e st et e eteebeeneensenae 9
DRAFT ITU-T Rec. H.264 (2002 E) i

DRAFT ISO/IEC 14496-10 : 2002 (E)

5.4 BIE-WIS@ OP@FAIOVS ...ttt et h ettt ket h bttt h et b e bt ettt ettt
5.5 ASSIGNINEAE OPEFALOTS.oeee ettt ettt ettt e sttt ekt e e e e bt et e st e sttt e bt et e bt eh e e st et e teete st et ae
5.6 RANGE MOTALION ...t ettt ettt ettt h ekt s et e bt e et et e bt s e es e e bt ebten e et e teeteeneennenaen
5.7 Mathematical functions...............cccceeeeeeeenennnn..

5.8 Variables, syntax elements, and tables
5.9 Text description of logical operations.........
510 PFOCESSES ...ttt ettt bkttt h bt et h ettt sh et b et

6 Source, coded, decoded, output data formats, scanning processes, and neighbouring relationships................ 12
G.1 BIISIFEAML JOTIALS ...ttt ettt a etttk a et et e s e s e s e ae s e st eaeebe b essesees e s essese s esseneesesseseas
6.2 Source, decoded, and OUIDUL PICTUFE FOTMALS.............c..coccovueieieeiiieiieeeeee ettt ettt ese s
6.3 Spatial subdivision of pictures and SlCes.................ccccccuverevecniinenenennenn,

6.4 Inverse scanning processes and derivation processes for neighbours
6.4.1 Inverse Macroblock SCANNING PIOCESSc..evveveriirieuiriiriiieiertetetett sttt ettt ettt b et ettt e e et eaenaen
6.4.2 Inverse macroblock partition and sub-macroblock partition scanning process w15

6.4.2.1 Inverse macroblock partition scanning process 16
6.4.2.2 Inverse sub-macroblock partition scanning process
6.4.3 Inverse 4x4 Tuma blOCK SCANMNING PIOCESSeveevirueierieieiieietieiesieeetesteteseetestereesessesensesesseseenessessensessensenesen 17
6.4.4 Derivation process of the availability for macroblock addressescooereieirerieereneieireee e 17
6.4.5 Derivation process for neighbouring macroblock addresses and their availabilityccccceceeirenecnnenne. 17
6.4.6 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames 18
6.4.7 Derivation processes for neighbouring macroblocks, blocks, and partitions
6.4.7.1 Derivation process for neighbouring macroblocks...........ccccevervecieinieriecennenns
6.4.7.2 Derivation process for neighbouring 8x8 luma block...
6.4.7.3 Derivation process for neighbouring 4x4 luma blocks........
6.4.7.4 Derivation process for neighbouring 4x4 chroma blocks....
6.4.7.5 Derivation process for neighbouring partitions...

6.4.8 Derivation process for neighbouring loCationsceceveverererieinenerineneneeeneeeeeieseeneen
6.4.8.1 Specification for neighbouring luma locations in fields and non-MBAFF frames
6.4.8.2 Specification for neighbouring luma locations in MBAFF framesccccceviverievineiieineneeeeeeee

7 Syntax and semantics

7.1 Method of describing syntax in tADULAY fOFMLcccooiieiiiieiieit ettt aeneas
7.2 Specification of syntax functions, categories, and descriptors...................
7.3 Syntax in tabular form

7.3.1 NAL UNIE SYNEAX ettt see et e e e e eeenes
73.2 Raw byte sequence payloads and RBSP trailing bits syntax
7.3.2.1 Sequence parameter set RBSP syntax....

7.3.2.2 Picture parameter set RBSP Syntax.........ccocoeeeveeriecieerieneennnnn. .

7.3.2.3 Supplemental enhancement information RBSP SYNtaXcccccvevieirinieiniininieinineceseneeee e
7.3.2.3.1 Supplemental enhancement information MESSAZE SYNLAX........ccvevererrerieerreriereererieieesreseeseesesseseeseens

7.3.2.4 Access unit delimiter RBSP syntax

7.3.2.5 End of sequence RBSP SYNAXccccciviriiiriieieieerie ettt ettt st

7.3.2.6 End of stream RBSP SYNEAX........cceoiiiriiiiiniiiiirieetet ettt ettt sttt ettt s

7.3.2.7 Filler data RBSP syntax........ccccoceeveerenenenenennne

7.3.2.8 Slice layer without partitioning RBSP syntax

7.3.2.9 Slice data partition RBSP syntax..........cccccceceeenunee.
7.3.2.9.1 Slice data partition A RBSP SYNTAX.......ccoeiiiriririeieireietereeete ettt

7.3.2.9.2 Slice data partition B RBSP syntax
7.3.2.9.3 Slice data partition C RBSP syntax
7.3.2.10 RBSP Slice trailing DItsS SYNEAXccveeeririeeieririeieieresiesietistetesessestestesessesseseesessessesessessesessassessesessessessesesses
7.3.2.11 RBSP trailing DItS SYNTAXc.ecveuietirierieiitesieieiestestetetesteteseesesseseesessassessesessessesessassessasessansessessesessensasesses
73.3 Slice header syntax
7.3.3.1 Reference picture list TEOTAEIING SYNIAX.....c..ccueuerrirreieririiieierierteseettrtetee sttt steseebestest b esbe s e seeneenesaen
7.3.3.2 Prediction Weight table SYMIAX.......cccerieririirieirierierteierteetrt ettt ettt ettt ettt sttt ettt sbe e eae s
7.3.3.3 Decoded reference picture marking syntax
734 Slice data SYNtaxccceeeeererereeeneneeenieneeeeenes
73.5 Macroblock layer syntax..........coccoceveereneeeennene.
7.3.5.1 Macroblock PrediCtion SYMEAXcccecieuirueirerierieieeieiet et ste ettt st et e st ete st ese st eseesessesteneesesseneenesnen
7.3.5.2 Sub-macroblock PrediCtion SYNMEAXccierveirererieeeteieieeeteseeseeststeeeseesesaeneesessesseeesessenseseesessessensenessas
7.3.5.3 Residual data syntax
7.3.5.3.1 Residual block CAVLC SYNTAX ...ocueveiriinieieiieieieeeiesieietesie et seeseesessessentesessensesessesseneesesensesessees
7.3.5.3.2 Residual block CABAQC SYNEAXeveiiiirieietinieieeetesteseetesteteseesesseseessssestessssessessesessensessssensessesessens
7.4 Semantics
7.4.1 INAL UNIE SEIMANTICS ..c.veuvevieviieeietieteiestetetesteestestestetassessesessesseseasessesseseesessesessessessessesessessessssessessessesessessasens

ii DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

7.4.1.1 Encapsulation of an SODB within an RBSP (informative)..........coceceeiriieiniinieiieineeeesecee e 47
7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences 48
7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation
7.4.1.2.2 Order of access units and association to coded video sequencescc.cceueueeuennene.
7.4.1.2.3 Order of NAL units and coded pictures and association to access units.....
7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture
7.4.1.2.5 Order of VCL NAL units and association to coded pictures...........cceevecerereeeeriniesieeserieieesieeene s
7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics
7.4.2.1 Sequence parameter set RBSP semantics............cccccoevevenrienennen.
7.4.2.2 Picture parameter set RBSP SEMANtICS.........ccevtiiiiieriiiieieieieie ettt sbe e essenseereennes
7.4.2.3 Supplemental enhancement information RBSP SemMantics...........ccoeeeeirreieiniinieineneeceeseeee e
7.4.2.3.1 Supplemental enhancement information message semantics
7.42.4 Access unit delimiter RBSP SEMANTICSc.coeueririeiiririeiiniiieiiniiicineretneeeccsrer ettt
7.4.2.5 End of sequence RBSP SEMANLICScc.ccveuiriirieieieieietieiisieiee sttt ettt se ettt eaeseeneenesaas
7.42.6 End of stream RBSP semanticsc.ccccovveirreecnnccnneccnnnee

7.4.2.7 Filler data RBSP semanticscccoecevevveirruenenne

7.4.2.8 Slice layer without partitioning RBSP semantics.......

7.4.2.9 Slice data partition RBSP SEMANTICSceeeevirieieieiiiieieieieeteieiesiesieiee st se et sseseesesseseesessessessesessessesssses
7.4.2.9.1 Slice data partition A RBSP SEMANLICSccvevirviieiieieieeietisieieiete sttt sieeeressesae e e ssessesessesseseesenns

7.4.2.9.2 Slice data partition B RBSP semantics
7.4.2.9.3 Slice data partition C RBSP semantics
7.4.2.10 RBSP slice trailing bits SEIMANTICSc..ceeuerueuiruirienieieetintetetestest et etestestes st ese ettt esesbe st st benbeseeneenenaes
7.42.11 RBSP trailing bits semantics
7.4.3 Slice header semantics...........cocecveenene
7.4.3.1 Reference picture list reordering semantics
7.4.3.2 Prediction weight table semanticsc.........
7.4.3.3 Decoded reference picture marking semantics
7.4.4 Slice data SEMAantics..........coeeriruevererercrniererernenenenne .
7.4.5 MacCTOblOCK 1AYET SEMANLICSc.veuvevieiieeieietietesteiete ettt tete et ete st e eeeste s eseesessesaeseesesseseesessessesassensesesensessasens
7.4.5.1 Macroblock prediCtion SEIMANTICS.........cveueverirerieieeeteietetesteeesestesteeetesseeesesseseseesesseseesessesseneesessensenessan
7.4.5.2 Sub-macroblock prediction semantics .
7.4.5.3 Residual data SEMANTICSc.coveuiuiriiieirieiiiieetceeete ettt st st e
7.4.5.3.1 Residual block CAVLC SEMANTICScccverveieririeieieieieeietestesieseesesseseesesseseessssessessesessessessssessesessensenes
7.4.5.3.2 Residual block CABAQC SEMANTICS.ccueiruirieieiirienieietesteteieeiest et esteste et see st ese et se e sbe st sbe e e

8 Decoding process
8.1 NAL URTt AECOAING PFOCESS ..ottt ettt ettt b ettt be et ettt e b e aeeeeeneeneas
8.2 STiCE AECOMING PFOCESS ...ttt ettt ettt e st ettt eae bt sten e

8.2.1 Decoding process for picture order count
8.2.1.1 Decoding process for picture order count type 0
8.2.1.2 Decoding process for picture order count type 1
8.2.1.3 Decoding process for picture order count type 2

822 Decoding process for macroblock to SIlice Sroup mMap........cceceverieiriirieiirienieniececeeee st
8.2.2.1 Specification for interleaved SliCe Sroup MAP LYPE....cvevereeirieieirieieiireriee et seeeeee et seeseeeens
8.2.2.2 Specification for dispersed slice group map typecccceeeevereerereereeeennn
8.2.2.3 Specification for foreground with left-over slice group map type
8.2.2.4 Specification for box-out slice group map types.......cccceeveeeerreveerereeeenenns
8.2.2.5 Specification for raster scan SliCE SroupP MAP LYPES......ccveerrerrereerirreierirresieeeseseeseesessessessesessessesessessesessens
8.2.2.6 Specification for Wipe SIiCE rOUP MAP LYPES ...vevveurrrerieeieririeieieeiesieeeetesteeesessesseseesessessesessessesessessesseseesens
8.2.2.7 Specification for explicit slice group map type
8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map 85

8.2.3 Decoding process for slice data partitioningcoceererieirerienieererieesenteterest ettt ere et see e saes

824 Decoding process for reference picture lists construction
8.2.4.1 Decoding process fOr PICUIE NUIMDETScc.coueieiririerieietieterteeete sttt sttt sttt be et sae s esesbesbeneeneenens
8.2.4.2 Initialisation process for reference PICtuIe 1ISEScoerveirerieieririeieceee et

8.2.4.2.1 Initialisation process for the reference picture list for P and SP slices in frames

8.2.4.2.2 Initialisation process for the reference picture list for P and SP slices in fields

8.2.4.2.3 Initialisation process for reference picture lists for B slices in frames..........c.cccceeveennenee.

8.2.4.2.4 Initialisation process for reference picture lists for B slices in fields........c..ccocovevievieininenieceeiiennnn

8.2.4.2.5 Initialisation process for reference picture lists in fieldsocooeveeirieneneieireeeeeeeeee
8.2.4.3 Reordering process for reference picture lists .

8.2.43.1 Reordering process of reference picture lists for short-term pictures.............ceceeveeeerereerererenennen

8.2.4.3.2 Reordering process of reference picture lists for long-term picturescecevveeecereriereeeresreennnen

8.2.5 Decoded reference picture marking PrOCESScrverieerrerieieierienteitetentetest st st esestesteeesesteseseebesaeseneenesees

DRAFT ITU-T Rec. H.264 (2002 E) il

DRAFT ISO/IEC 14496-10 : 2002 (E)

8.2.5.1 Sequence of operations for decoded reference picture marking ProCessceceeereerereriereerererereeennens
8.2.5.2 Decoding process for gaps in frame NUML..........c.ccviuirrieieinieiee ettt ese e eseeeens
8.2.5.3 Sliding window decoded reference picture marking ProCESSecveerueruerieeerieseeiereseeeeeseeseeeseseeseesens
8.2.5.4 Adaptive memory control decoded reference picture marking process......
8.2.5.4.1 Marking process of a short-term picture as “unused for reference”
8.2.5.4.2 Marking process of a long-term picture as “unused for reference”...........ccccoevevvernennnnnnn
8.2.5.4.3 Assignment process of a LongTermFrameldx to a short-term reference picture
8.2.5.4.4 Decoding process for MaxLongTermFrameldX..........ccoceveererieireniiieininieeeeneeeesesee e
8.2.5.4.5 Marking process of all reference pictures as “unused for reference” and setting
MaxLongTermFrameldx to “no long-term frame indiCes”.........cceevuirieriririeirinenieseseee et e
8.2.5.4.6 Process for assigning a long-term frame index to the current picture
8.3 INra PrediCtion PPOCESSccucviiieeiieiieee ettt .
8.3.1 Intra_4x4 prediction process for Iuma SAMPIEScceeirieriririerieirierieeeeeeeet ettt
8.3.1.1 Derivation process for the IntradX4PredMOde..........ooiieiririerieieieeee et
8.3.1.2 Intra_4x4 sample predictionccceeveveeenierieeeerieieeseeeeens
8.3.1.2.1 Specification of Intra_4x4 Vertical prediction mode..........
8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction mode
8.3.1.2.3 Specification of Intra_4x4 DC prediction MOAEcc.eeveirierieiienieieisieieeeesieee et eeseeeeas
8.3.1.2.4 Specification of Intra_4x4 Diagonal Down_Left prediction modecccceecenveieinerieieeneienenen
8.3.1.2.5 Specification of Intra_4x4 Diagonal Down_Right prediction mode
8.3.1.2.6 Specification of Intra_4x4 Vertical Right prediction mode..........cccoceeeirininerininennneneenene
8.3.1.2.7 Specification of Intra_4x4 Horizontal Down prediction mode
8.3.1.2.8 Specification of Intra_4x4 Vertical Left prediction mode...............
8.3.1.2.9 Specification of Intra 4x4 Horizontal Up prediction mode............
83.2 Intra_16x16 prediction process for luma samplesccceceverereenenecnnens
8.3.2.1 Specification of Intra_16x16_Vertical prediction mode..........
8.3.2.2 Specification of Intra_16x16_Horizontal prediction mode
8.3.2.3 Specification of Intra_16x16_DC prediction mode.................
8.3.2.4 Specification of Intra_16x16_Plane prediction MOde...........ccuecirrerieirierieieerieieeseeee e
83.3 Intra prediction process for Chroma SAMPIES...........ccveirieiririerieireeee et
8.3.3.1 Specification of Intra_Chroma_DC prediction mode
8.3.3.2 Specification of Intra_Chroma Horizontal prediction Modecoevueererienirenenineneneceeeeeeieseenes
8.3.3.3 Specification of Intra_Chroma_Vertical prediction Mode............ccueceeririerieierienieinieieeeereee e
8.3.3.4 Specification of Intra_Chroma_Plane prediction mode
834 Sample construction process for [PCM macroblocks.........
8.4 Inter prediCtion PFOCESSccccueceeceereeeieieeeeeeeeeeee ettt ese s

8.4.1 Derivation process for motion vector components and reference indices
8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices.................... 108
8.4.1.2 Derivation process for luma motion vectors for B_Skip, B Direct 16x16, and B_Direct 8x8........... 109
8.4.1.2.1 Derivation process for the co-located 4x4 sub-macroblock partitions.............cecceevrerieirerierieennene 109

8.4.1.2.2 Derivation process for spatial direct luma motion vector and reference index prediction mode ... 112
8.4.1.2.3 Derivation process for temporal direct luma motion vector and reference index prediction mode 113
8.4.1.3 Derivation process for luma motion vector PrediCtionccevereieieeriecieeeesiee e 115
8.4.1.3.1 Derivation process for median luma motion vector prediction
8.4.1.3.2 Derivation process for motion data of neighbouring partitions
8.4.1.4 Derivation process for chroma motion vectors
8.4.2 Decoding process for Inter prediction samples
8.4.2.1 Reference PiCture SCIECION PIOCESSccvevverrirrierierieeierieertetetestesseetesessesseeseessensessesseeseessessessesssensessenses
8.4.2.2 Fractional sample interpolation process
8.4.2.2.1 Luma sample interpolation process
8.4.2.2.2 Chroma sample interpolation PIOCESSereeuerierirerierieeeterieteiesteeeteeteteneesessestesesbeneenesseseeneesensens
8.4.2.3 Weighted sample PrediCtion PrOCESS........cceciierietrererieeeetirieieie et eeeetetesteee st e esessese e sesaeneeseseneeseesenes
8.4.2.3.1 Default weighted sample prediction process
8.4.2.3.2 Weighted sample PrediCtion PIOCESSeruerveeerierieeriereeeetesieeetesteeeseesesesessesseseesessensesessessensesensens
8.5 Transform coefficient decoding process and picture construction process prior to deblocking filter process 126

8.5.1 Specification of transform decoding process for residual BIOCKScoerueiririenieirieieeseeecee e 126
8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction
mode 127
8.5.3 Specification of transform decoding process for chroma Samplesccocveeirievievirienecesienieieeeeeeeeeenes 128
8.5.4 Inverse scanning process for transform COEffICIENTS.......cc.eiierieiiiiriiiirerice e 129
8.5.5 Derivation process for the quantisation parameters and scaling function...........cccceceveeeeirereinenenenennne 129
8.5.6 Scaling and transformation process for luma DC transform coefficients for Intra 16x16 macroblock type
130

iv DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

8.5.7 Scaling and transformation process for chroma DC transform coefficientscccecevererererenincnenenne. 131
8.5.8 Scaling and transformation process for residual 4X4 DIOCKSccoverieiriirieieiriereeeee e 131
8.5.9 Picture construction process prior to deblocking filter ProCess..........ccveruerieererieirenieiee e 133
8.6 Decoding process for P macroblocks in SP slices or SI MACFOBDIOCKSc..cccoooveveeiieiieiiieiiieeeeens 133
8.6.1 SP decoding process for NON-SWitChiNg PICTUTESccvrerierierieririeieiete ettt seete et eaesaeseeseseessesessessens 134
8.6.1.1 Luma transform coefficient deCOING PIrOCESScvrverieirririerieiierietetesiestee ettt ettt e esessesseseesesaens 134
8.6.1.2 Chroma transform coefficient decOdiNg PrOCESSccveveeririeieirierieeieieiee ettt eeeaenis 135
8.6.2 SP and SI slice decoding process for SWitChing PICLUIEScoueveveruerieririerieirerieneeiereetee et 136
8.6.2.1 Luma transform coefficient deCOdING PIOCESScoerveriririirieiririenieitrtenteteesre ettt ns 137
8.6.2.2 Chroma transform coefficient decOding PrOCESScccoeruirueuiriirienieiriirieene ettt 137
8.7 DeDIOCKING fIItEF PFOCESS ...ttt ettt s st bt en e st ene et nn et nen 138
8.7.1 Filtering process for DIOCK €A@ES.cuiuiriirieieiiieieee ettt sttt 141
8.7.2 Filtering process for a set of samples across a horizontal or vertical block edgeccceveveriercreninnnnene 142
8.7.2.1 Derivation process for the luma content dependent boundary filtering strengthcccccevvreenennne. 143
8.7.2.2 Derivation process for the thresholds for each block €dge.........ocevveiruirieiiirieicieeeeeee e 144
8.7.2.3 Filtering process for edges with bS 1ess than 4...........c.ccoeirieirinineiee s 145
8.7.2.4 Filtering process for edges for bS €qUAl t0 4........cocirieieiiieieieeseee ettt 146
9 Parsing process 147
9.1 Parsing process for EXp-GOIOMB COAEScccccciouiiieiiiiieiei ettt et 147
9.1.1 Mapping process for signed EXp-Golomb COAEScccirieiiirierieiieiirieieiieieieiiee et a e 149
9.1.2 Mapping process for coded DIOCK PALLEITIc.ecveieeiiiirieieiirieietetetet ettt a s eseeseeas 149
9.2 CAVLC parsing process for transform cOeffiCient leVels..................c.ccccoeveeiieiinieiieinieies oo 151
9.2.1 Parsing process for total number of transform coefficient levels and trailing ones...........cccoceeeceeenenenen. 151
922 Parsing process for 1evel iNfOrMAtION.cccevveeiiirieieireieieteetee ettt e s tesbessesseseeseees 154
923 Parsing process for run iNfOrmationc.cverieiririeiiirenecee ettt 156
924 Combining level and run infOrmMationcoeoieieiriereiree ettt 158
9.3 CABAC parsing process fOr SHICE AQUA...................cccuiireiiiiiieiiiie ettt 159
9.3.1 INItIAlISATION PIOCESS ...veuveuireiieietirtetetteteet ettt ettt et et et et e te st eae st et esesbe b e st et e stentesesbenseneesessentenesbenseneesensens 160
9.3.1.1 Initialisation process for CONteXt VAriables.ccoerieiruerieriririeieese ettt eaeaens 160
9.3.1.2 Initialisation process for the arithmetic decoding eNGINeccecevirierieirerieirereee e 170
93.2 BiINATIZAtION PIOCESS ... vcueevietertenietirieniettetesteteteeteteseetessestesesseseesessessestesessenseseasesseseasensensaseasessensenessenseneesensens
9.3.2.1 Unary (U) DINATIZAtION PIOCESSeveveevirrerieierirtesereeiestestesessesseseesessessessssassessesessessessesessessesessessessassesessens
9.3.2.2 Truncated unary (TU) binarization process
9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGk) binarization processc.ccevevueeeresuereeesuennens
9.3.2.4 Fixed-length (FL) biNarization PrOCESSccerueirierieirierieteieeieteitete sttt stestesesse et eseseeseesesbeseesesaensens
9.3.2.5 Binarization process for macroblock type and sub-macroblock type...........ceeveieirierieiierieciienieeeeins
9.3.2.6 Binarization process for coded blOCK Pattern............ccevuiriieieiieniiriieieiere ettt sre e
9.3.2.7 Binarization process for mb_gp _delta..........ccoouirieiririeiiiee e
933 DEcOdINg PIOCESS FlOW....c.eiuiiiiiiiiiiiieiieertet ettt ettt b ettt st sa et sesbe st eseebetens
9.3.3.1 Derivation process fOr CLXIAXoiiriiiiiriiieiree ettt ettt sttt et s be e enenaens
9.3.3.1.1 Assignment process of ctxIdxInc using neighbouring syntax elements............ccccoceveeeeereecceeneennn
9.3.3.1.1.1 Derivation process of ctxIdxInc for the syntax element mb_skip flag
9.3.3.1.1.2 Derivation process of ctxIdxInc for the syntax element mb_field decoding flag.................. 179
9.3.3.1.1.3 Derivation process of ctxIdxInc for the syntax element mb_type.........cccceevrerienirerenieerenenne. 180
9.3.3.1.1.4 Derivation process of ctxIdxInc for the syntax element coded_block pattern........................ 180
9.3.3.1.1.5 Derivation process of ctxIdxInc for the syntax element mb_qp_delta..........ccceevevrrevrererennnne. 181
9.3.3.1.1.6 Derivation process of ctxIdxInc for the syntax elements ref idx 10 and ref idx II............... 181
9.3.3.1.1.7 Derivation process of ctxIdxInc for the syntax elements mvd 10 and mvd _11........................ 182
9.3.3.1.1.8 Derivation process of ctxIdxInc for the syntax element intra_chroma pred_mode................ 182
9.3.3.1.1.9 Derivation process of ctxIdxInc for the syntax element coded_block flag..............c.cocecec. 183
9.3.3.1.2 Assignment process of ctxIdxInc using prior decoded bin valuescccoceveeverenenincninecncneenns 184
9.3.3.1.3 Assignment process of ctxIdxInc for syntax elements significant_coeff flag,
last_significant_coeff flag, and coeff abs level minusl.........cocooeiiiiiieniiiiineireeeee e 184
9.3.3.2 Arithmetic dECOAING PIOCESScoveueeriruirieieiirteieieteste et eterte sttt etestesees e be st et ebestenteseebesseneebensenbeneeneenesens 185
9.3.3.2.1 Arithmetic decoding process for a binary deCiSION...........cceerveeiririeiririerieeeiereece e 186
0.3.3.2.1.1 State transition PIOCESSceerverueutruerterteteetirteseesestesteseetestentesessessesessessentesessenseseesesseneesessensessenes 187
9.3.3.2.2 Renormalization process in the arithmetic decoding engineccecevueeveerierieininereeeseeeeeeenen 189
9.3.3.2.3 Bypass decoding process for binary deCiSIONSc.ccveieererieiirinieieiiriesieeeteseeeeesseeeseesessessesesaes 189
9.3.3.24 Decoding process for binary decisions before termination.............cccecereeeeererieieereseeeseeeeeen 190
934 Arithmetic encoding process (INfOrMALIVE).........ecveiruirieieiiesieeetestestee ettt ettt ste e saeaesee e ssesaeseeseeseneas 191
9.3.4.1 Initialisation process for the arithmetic encoding engine (informative)c..coceeveverenerinenenercnennne 191
9.3.4.2 Encoding process for a binary decision (Informative)..........ccceverueieerierieieeieieeseiee e eveaens 191
9.3.4.3 Renormalization process in the arithmetic encoding engine (Informative)........c..cccecevereirerenercnennne 192

DRAFT ITU-T Rec. H.264 (2002 E) v

DRAFT ISO/IEC 14496-10 : 2002 (E)

9.3.4.4 Bypass encoding process for binary decisions (informative)coceeereeirrerieineneneereeeseseesene 193
9.3.4.5 Encoding process for a binary decision before termination (informative)..........coceeeeevreriecerenereeenene 194
9.3.4.6 Byte stuffing process (INFOrMAtIVE)..........eoveiiirieriiisieieeee ettt s neeaenens 195
Annex A Profiles and levels 196
A.l1 Requirements on video decoder CAPADIIILYcccooeoiiiieiiiciieeee ettt 196
A2 PFOJILES .ottt ettt ettt a e a et et s e h b e n bRt h etttk b sttt eb et ettt ebe e e e 196
A2.1 BaSEINE PIOTIIE ...ttt ettt ettt sttt ettt e s e e st e s et e s e et e st esenteneete s eneerennens 196
A.2.2 Main profile
A23 EXEENACA PIOTILE ... vevietiiieiciicieietee ettt ettt ettt sttt e b e s e e teebesseseesasseseesessenseneesessensesensens
A3 L@VOLS .ottt h ettt a bttt ettt et e bt et beehe ekt se et e b e bt eneenaenteeaeanean
A3l Profile-independent level limits....
A32 Profile-Specific 16Vl LIMILS.......ccoccviiieiicieieiceiceetee ettt ettt ettt be b e b beeseenaesaseenas
A.3.2.1 Baseline Profile IMILSccuioiieieierieiiieieieeteee ettt ettt et e e see st e sbe s e see s essesseeseessesseeseensensensens
A.3.2.2 Main profile limits.............

A.3.2.3 Extended Profile Limits
A33 Effect of level limits on frame rate (informative)

Annex B Byte stream format
B.1 Byte stream NAL unit Syntax and SEMANLICScccccurueeueereneeeiieeeeeisie ettt ese et et eneseenseneanes
B.1.1 Byte Stream NAL UNIE SYNEAXcveeeiruirieietirieieie ettt ettt stes et steeesestesteseesesbe st et ssesenseseesesseneesesseneen
B.1.2 Byte stream NAL UNIt SEMANTICS. ...c..euviueriereetietirteieeieeestetetesteseeeetestetesesseeesesseseseesesseseesessensenessesseneesensens

B.2 Byte stream NAL unit decoding process
B.3 Decoder byte-alignment recovery (INfOFMALIVE)ccccooeeieeiiinieieesieieieeeeeieiee ettt eee e eeas

Annex C Hypothetical reference decoder
C.1 Operation of coded picture buffer (CPB)

C.1.1 Timing of bitstream arrival..................
C.1.2 Timing of coded PICtUIE TEMOVALcevieieiieiiieiieieeieietcetee ettt sttt seetesaesseseesesseseesensens

C.2 Operation of the decoded picture BUFEr (DPB)...........c.ccoccioiieieieeeee ettt
C.2.1 Decoding of gaps in frame num and storage of "non-existing" frames
C2.2 Picture decoding and OULPULc.coueiiirieirtiieeeieetertet ettt ettt et eb bbbttt ebesaenees
C23 Removal of pictures from the DPB before possible insertion of the current picture...........cccoevveierrrennene 210
C24 Current decoded picture marking and StOrage.........coueeververieerienieinienieeeseeeesieeee e

C.2.4.1 Marking and storage of a reference decoded picture into the DPB
C.2.4.2 Storage of a non-reference picture into the DPB

C.3 Bitstream conformance
C.4 Decoder conformance................cc.cccuevvvvnnvancnn
C4.l Operation of the output order DPB
C4.2 Decoding of gaps in frame num and storage of "non-existing" pictures

C43 PACHUIE AECOMINE.eevietiieeietiiteieiee ettt ettt ettt et et sb e st eaesbe b e se e s e sesaesasesseseeseseseesenseseaseesassesensansas
C44 Removal of pictures from the DPB before possible insertion of the current picture
C4.5 Current decoded picture marking and SLOTAZE..........c.ceruerieiierieietiieieieeteee ettt sresb e esesse e esesens
C.4.5.1 Storage of picture order counts for the decoded PICtUIE..........coevueueririeiieiniiiineere e
C.4.5.2 Storage and marking of a reference decoded picture into the DPB.............
C.4.53 Storage and marking of a non-reference decoded picture into the DPB
C.4.5.4 "BUMPING PIOCESS ..cuveuirvetenteuertiteitetertetettetestestesestestetestetestsbestestesesbetese et estestebesbeteseetestestesesbensenesuensens

Annex D Supplemental enhancement information
D.1 SEI payload syntax

D.1.1 Buffering period SEI MESSAZE SYNMEAXcc.evviieririiriiriiirienieiiiiestentetest sttt stet st sttt et sttt ebe st s eseesesseneen
D.1.2 Picture timing SEI MESSAZE SYNMEAX ...c..e.erviriiiiriirieieiirienieiist ettt ettt ettt st eb st sttt stestese s et et saenens
D.1.3 Pan-scan rectangle SEI message syntax

D.1.4 Filler payload SEI MESSAZE SYNEAXccvirueuirireirienietirierieeeteeteteseetestesteseesestesteneesessesseseesessenteseesesseneeneasensens

D.1.5 User data registered by ITU-T Recommendation T.35 SEI message syntax
D.1.6 User data unregistered SEI message syntax

D.1.7 Recovery point SEI MeSSage SYNtaX.........ccevrvereeererieireerieieeseneeesieseeeenens

D.1.8 Decoded reference picture marking repetition SEI message syntax

D.1.9 Spare picture SET MESSAZE SYINTAXc.eeveveeiererreietietisiesiesestetestesesseseesessesseseesessessessesassessesessessesessessessesessenes
D.1.10 Scene information SET MESSAZE SYNAX.......ccerverirririeieirteiesiesesseteseesesseaesessessesessessessesessessessesessessessesessens
D.1.11 Sub-sequence information SEI message syntax

D.1.12 Sub-sequence layer characteristics SEI MeSSAZE SYNTAXcvvuerverieuirierieiiienienieieeteietete et seee e seeneens
D.1.13 Sub-sequence characteristics SEI message syntax

D.1.14 Full-frame freeze SEI message syntaxc.cceeceenene

D.1.15 Full-frame freeze release SEI MESSAZE SYNTAXc..evruiruerieuirtirieieieierteieicsie et ete sttt see st seeee e e enesneaens
D.1.16 Full-frame snapshot SEI MESSAZE SYNEAXc.erueiruirierieirierieieieeteteteetestee et seeeeseesesteseesesteneesesseneenessenaens

vi DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

D.1.17 Progressive refinement segment start SEI message syntax
D.1.18 Progressive refinement segment end SEI message syntax

D.1.19 Motion-constrained slice group set SEI MeSSAZE SYNLAXc.ccveuerreeeirierieieireeieeieeesieeeeesteteseseseeeenenaens
D.1.20 Reserved SEI message SyNtaxc.ccoeeeeveeereeneeerieneeneenennenes

D.2 SEI payload semanticsccccceceeceeceeenennnns
D.2.1 Buffering period SEI message semantics
D.2.2 Picture timing SEI MESSAZE SEIMANTICSeirvirierieririerierirtesieteresteaesessesseeesessessesessessessesessessessssassessesessens
D.23 Pan-scan rectangle SEI MeSSage SEMANTICScoverteriririeriririeieiirieniee ettt sttt sbeste e ebesteseeresae e
D.2.4 Filler payload SEI message semantics
D.2.5 User data registered by ITU-T Recommendation T.35 SEI message semantics..........c.c.oecerveveereeveennnnes 228
D.2.6 User data unregistered SEI message semantics
D.2.7 Recovery point SEI message SEMAaNnticsevueervereeererieirerenieresieneeeenens
D.2.8 Decoded reference picture marking repetition SEI message Semantics..........oceceeerereeererieceireneerenennens 230
D.2.9 Spare picture SEI MEeSSAZE SCIMANTICS.cveveuirueieirterieieteeteteteeseeeeteseeeeseeseseeseesesseseneesessensesesensesessenes
D.2.10 Scene information SEI message semantics..................

D.2.11 Sub-sequence information SEI message semantics
D.2.12 Sub-sequence layer characteristics SEI message semantics

D.2.13 Sub-sequence characteristics SEI MeSSage SEMANTICSecveurrverieieririeieeeeseeietessesieseesesseseesesseeesessessens
D.2.14 Full-frame freeze SEI MESSAZE SCMANTICS......e.veveuiruirierieirtirieteeeteteseetesseseesessesseseesessessesessessessssassessesessens
D.2.15 Full-frame freeze release SEI message semantics
D.2.16 Full-frame snapshot SEI MeSSaZE SEMANLICSccveveueruirieiietirierieiriertesieiesiesteeerestessetesbessestesessesesessesaenens
D.2.17 Progressive refinement segment start SEI message SemMantics...........ccevveueereeueninieueninieineneenereeseereennenes 237
D.2.18 Progressive refinement segment end SEI message semantics
D.2.19 Motion-constrained slice group set SEI message semantics
D.2.20 Reserved SEI MeSSAZE SCMANTICSc..eveutruerteiererteieseetesteeettsteseestesesteseesestesteneesessenseneesessentesessensenseneesensens
Annex E Video usability information
E.l VUL SYREAX ..ottt ettt e h ettt e s s b e st st e s e bees e ess e s e e b e st ensesseeaeeseens e s e eseeneensenseeaeeseennan
E.l.1 VUI PATAMELETS SYNTAX ...cuvevereieiieiinterieeitete st ettt et saeest et st eb et et e s bt sbeeat et e ebeeb e et entesbesbeensenteebesbeeeentenaes
E.1.2 HRD PArameters SYNTAXccueeueeuiertentiitieiiete sttt ettt et st e et e e e st e s bt saee st e besbees e et e sbesbeeseensesbeeseensensenaeas
E2 VUI semantics
E2.1 VUI PArAMELETS SEIMANLICSveuveuveeeeteteeieteteseeseeseteseesesseseesessessesessesseneesassensesessensesessesseseesenseseesesseseesessensn
E2.2 HRD Parameters SCIMANTICS.eiveverrrrerieeereetetesiesessestesissesseseasessessesessessessssessessesessessasessessessessesessessesensens
LIST OF FIGURES
Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a framec.ccveuneee. 13
Figure 6-2 — Nominal vertical and horizontal sampling locations of samples top and bottom fields.............cccceevrerrnnnne. 14
Figure 6-3 — A picture with 11 by 9 macroblocks that is partitioned into tWo SHCES........ccccerveueereerineinriccneernrcceneene 14
Figure 6-4 — Partitioning of the decoded frame into Macroblock Pairs.ccoecevieuiirieiriieinicciecre e 15

Figure 6-5 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock partition

SCAILS. .vurutereuteueuetetetestetete ettt et se e b bt eea et e b st s bt h ek h ek ekt h e bkt h e b bt h et b et bbbttt a ettt n s 16
Figure 6-6 — Scan for 4X4 TUMEa DIOCKS.c.eieiriiieietiee ettt ettt s et e st et ese st e e eseesesse st enessenseneenan 17
Figure 6-7 — Neighbouring macroblocks for a given macrobloCKcoeoeiriririiinieiiiieeeee e 18
Figure 6-8 — Neighbouring macroblocks for a given macroblock in MBAFF frames..........ccccoevevinieinicccnncnncccnnene. 18
Figure 6-9 — Determination of the neighbouring macroblock, blocks, and partitions (informative)...........ccccocerveveerrenene. 19

Figure 7-1 — The structure of an access unit not containing any NAL units with nal unit_type equal to 0, 7, 8, or in the

1aNEZE OF 12 £0 31, INCIUSIVE ...c.viiiieieetiieee ettt ettt sttt s te et et e b et eseebe st sseneeseese s eneesesenseneesenseneesens 50
Figure 8-1 — Intra_4x4 prediction mode directions (INfOrMAatiVe)cceoeeiriirieinirerei e 97
Figure 8-2 —Example for temporal direct-mode motion vector inference (informative)coccocevveverenerineneneenennenes 115
Figure 8-3 — Directional segmentation prediction (INfOrMALIVE)ceeveieiiieieiieieiitesieieesiee et see et sseeeeeesenees 116

Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks
with lower-case letters) for quarter sample luma Interpolation.cceevevveierirerieiierieieere ettt ees 121

Figure 8-5 — Fractional sample position dependent variables in chroma interpolation and surrounding integer position
SAMPIES A, B, C, QNA D...oviiiiie ettt et h bt a et e e n ettt ne et nes 123

DRAFT ITU-T Rec. H.264 (2002 E) vii

DRAFT ISO/IEC 14496-10 : 2002 (E)

Figure 8-6 — Assignment of the indices of dcY to Iuma4x4BIKIAX.cccoceciviriiinnieiinniinecccee e 127
Figure 8-7 — Assignment of the indices of dcC to chromadx4BIKIAX.cccoieviniiiiiniiieniniiiicereeee e 128
Figure 8-8 — a) Zig-zag Scan. D) FICld SCANc.ccuiiiieieiieiiieiei ettt ettt ettt b st esse e eseesesseseesansas 129
Figure 8-9 — Boundaries in a macroblock to be filtered (luma boundaries shown with solid lines and chroma boundaries

ShOWN With dASNEA TINES)ueviuieeieiiiieiieiieie ettt ettt ettt esb et e te b esa et e b e seseeseesessenseseesenseseesensensesensenes 139
Figure 8-10 — Convention for describing samples across a 4x4 block horizontal or vertical boundary...........c.ccceeuenenee. 142
Figure 9-1 — Illustration of CABAC parsing process for a syntax element SE (informative)c.cccccovevcnncinnccnnnee 160
Figure 9-2 — Overview of the arithmetic decoding process for a single bin (informative)cocveeveeviecrreneneeeeieenen 186
Figure 9-3 — Flowchart for decoding @ deCISION...........eeuerieieiriiieiee ettt sttt sesseneeneesenean 187
Figure 9-4 — Flowchart of renormaliZation...........co.ecieiriieiiiiieeestee ettt sttt ettt eneebeean 189
Figure 9-5 — Flowchart of bypass deCOAING PrOCESScc.evveieuiriinieiririeietrieteiestestet ettt st se bttt st ebesaenees 190
Figure 9-6 — Flowchart of decoding a decision before termination.............c.oevveeirenieeiiesieieiseieeetesieee et 191
Figure 9-7 — Flowchart for encoding @ deCISION..........cceuiriiieiriieiieiiieiet ettt ettt ste e eneeseneas 192
Figure 9-8 — Flowchart of renormalization in the €NCOAET.co.eoueiririiriiiieieree et 193
Figure 9-9 — Flowchart 0f PUIBIt(B).....c.coeetiiiiriiieirirecc ettt sttt ettt et b e st ese e e 193
Figure 9-10 — Flowchart 0f @NCOAING DYPASSc.eeveieieiiiieieieiieieiei ettt ettt esaesee e esesaeseesessessessesaesessessesessessassesansas 194
Figure 9-11 — Flowchart of encoding a decision before termination...........cc..ecveerieieirienieirierieeee e 195
Figure 9-12 — Flowchart of flushing at termMinationcceoueeeirieiririeee ettt ettt st ene e 195
Figure C-1 — Structure of byte streams and NAL unit streams and HRD conformance points.............cccoceceeeeveinirecnnnne. 206
Figure C-2 — HRD DUTEr MOAEL........ccuiieiieiiieieiieieeeetette ettt ettt s a ettt b e s eseebessesaeseseseeseesensessesansan 207
Figure E-1 — Location of chroma samples for top and bottom fields as a function of chroma_sample loc_type top_field

and chroma_sample 10C_type Dottom fIEld.........c.ccirieieiieieiiiesicieeeeeteeite ettt st ene e 246

LIST OF TABLES

Table 6-1 — ChromaFormatFactor VAIUESco.ceririiirieiiiieiciei ettt et ettt et 12
Table 6-2 — Specification of input and output assignments for subclauses 6.4.7.1 t0 6.4.7.5...c..cccovevereininenerenereeees 19
Table 6-3 — Specification Of MDAGAINoooiiiiiiieieee ettt sttt e e et e beeseeseesbenbesseeneessenseeseennen 23
Table 6-4 - Specification of MBAAAIN AN YIMc.oouieiiiiiieiieieeceeeete ettt e e et b ss st se b e e esessensesaenan 24
Table 7-1 — NAL UNIt £YPE COACS....urrimiruiriirieietietiieiett e steet et e et te st et testeteseesesseseeseeseseseeseesensaneesessensestesesentesessensenesnan 46
Table 7-2 — Meaning Of PriMATY _PIC LYPC..ccueteiererieririirierieuteterteteteetesteteteeteste st esesseste st sbessesteseseseneese st eneestesesentenesseneesennen 56
Table 7-3 — Name association t0 SIICE LYPEc.evveuieriiriiiiiniirieieie ettt ettt ettt ettt b e st et eb e sbe st et ebese et enenaen 58
Table 7-4 —reordering_of pic_nums_idc operations for reordering of reference picture listscccveveeiviecieinenieeennnne. 63
Table 7-5 — Interpretation of adaptive_ref pic_marking mode flag...........coerieiririiieiieiiiiec e 64
Table 7-6 — Memory management control operation (memory_management control_operation) values............c..ccco...... 65
Table 7-7 — Allowed collective macroblock types fOr SIICE tyPE......cevivieiririerieirieieerieteteereeeee ettt 67
Table 7-8 — MacrobloCK tyPes fOr T SHCESeuiriiieietieieieieie ettt ettt ettt sttt te b e b e e esessessessesessessesessensesennan 68
Table 7-9 — Macroblock type with value 0 fOr ST SIICEScoirieiriiieieiieiecee ettt enas 69
Table 7-10 — Macroblock type values 0 to 4 for P and SP SIICES.......ccoirieirirereirieie ettt 70
Table 7-11 — Macroblock type values 0 t0 22 fOr B SICES......ccueciririeiiirieieiiericr ettt sttt 71
Table 7-12 — Specification of CodedBlockPatternChroma VAlUESccc.ecvrerieiiinenieinieieieeiee et eeeee e eseseesseseenas 72
Table 7-13 — Relationship between intra_chroma_pred mode and spatial prediction modes............cccevevvevererenenecnnenne. 73

viil DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 7-14 — Sub-macroblock types in P macroblOCKS..........ooeiriiieiiiieieireseeee ettt 74
Table 7-15 — Sub-macroblock types in B macroblOCKSc.coeiririeiiiriiiiiieici ettt 75
Table 8-1 — Refined SIiICE SrOUP MAP LYPEC...c.veuirieieiietieieieieiesteietete et e ettt e te st ese s este e saesseseesesesseseasessassessesessessesessensesensan 82
Table 8-2 — Specification of Intra4x4PredMode[luma4x4BIkIdx | and associated NAMES...........ccceeereerieireriereeereeeeeenes 96
Table 8-3 — Specification of Intral 6x16PredMode and associated NAMEScceevruerierieirienieenenieeeree et ees 102
Table 8-4 — Specification of Intra chroma prediction modes and associated NAMES..........c.covevveererrerieenirieeneneeeeeseenees 103
Table 8-5 — Specification of the Variable COIPIC.......c.iiiiiriiieieiieieteee ettt s s seetesbeseeseesennas 109
Table 8-6 — Specification 0f PICCOAINZSIIUCI(X) ..ueoieririeieiierieieiieie ettt ettt se et see e eneeseneas 110
Table 8-7 — Specification of mbAddrCol, yM, and vertMVSCaleccecirerieiiireiiirieeee et 111
Table 8-8 — Assignment of prediction Utilization flags.........c.ceerieriririririiieneeee e 113
Table 8-9 — Derivation of the vertical component of the chroma vector in field coding mode...........c.ccoeveevrerevieieinnennn. 118
Table 8-10 — Differential full-sample Tuma IOCAtIONSceviruirieieiiieiet ettt e eeesseneas 121
Table 8-11 — Assignment of the luma prediction sample predPartLX [X, YL J.ceoeeeerererererereinenereieeeeeee e 122
Table 8-12 — Specification of mapping of idx to ¢;j for zig-zag and field scanccccoevviiiiiini 129
Table 8-13 — Specification of QP¢ as @ fUNCtion Of QPceeivirieieiee e 130
Table 8-14 — Derivation of indexA and indexB from offset dependent threshold variables oc and B.........ccccceevveeeienennnee. 145
Table 8-15 — Value of filter clipping variable tco as a function of indexA and bS.........cccooeoirininiinininice 146
Table 9-1 — Bit strings with “prefix” and “suffix” bits and assignment to codeNum ranges (informative)...................... 148
Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)ccceeeeernnnnee. 148
Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(V).............. 149
Table 9-4 — Assignment of codeNum to values of coded block pattern for macroblock prediction modes.................... 149
Table 9-5 — coeff token mapping to TotalCoeff(coeff token) and TrailingOnes(coeff token)cccccevvvereecveinnnnene 153
Table 9-6 — Codeword table fOr 16VEl PIefiXcoioiiieiiiiieieiee et sttt ettt st 156
Table 9-7 — total zeros tables for 4x4 blocks with TotalCoeff(coeff token) 10 7ccccoveerineneiininenicireneriececenee 157
Table 9-8 — total _zeros tables for 4x4 blocks with TotalCoeff(coeff token) 8 t0 15ccveveiviiiieieieieeeeeeeeee 157
Table 9-9 — total_zeros tables for chroma DC 2X2 DIOCKScc.erieiriirieieiiesieieieieee ettt 158
Table 9-10 — Tables fOr TUN_ DEOTEooueiiiiiieiet ettt st b ettt et st e e eseebeean 158
Table 9-11 — Association of ctxIdx and syntax elements for each slice type in the initialisation process..........c.ccocceue.. 161
Table 9-12 — Values of variables m and n for ctxIdxX from 0 t0 10........ccccoreieiiirieieireeeeeee e 162
Table 9-13 — Values of variables m and n for ctxIdx from 11 10 23 ...c.cceeiiriiiiiniinnicireeecce et 162
Table 9-14 — Values of variables m and n for ctxIdx from 24 0 39......c.ccociriiiniinniicinececre e 162
Table 9-15 — Values of variables m and n for ctxIdx from 40 t0 53.....c.coiriiririniiie e 163
Table 9-16 — Values of variables m and n for ctXIdX from 54 10 59......cccoiveieiiiiieiieeeeeee e 163
Table 9-17 — Values of variables m and n for ctxIdx from 60 t0 69..........ccvueueeriririniiiiniiecec e 163
Table 9-18 — Values of variables m and n for ctxIdx from 70 t0 104........ccoeueoiriiiiniiiiniiectrec e 164
Table 9-19 — Values of variables m and n for ctxIdx from 105 t0 165......ccccoviriiiinininiiiiiceceeeceee e 165
Table 9-20 — Values of variables m and n for ctxIdxX from 166 t0 226.........cccccoeveieiiinieieiieieieeieeeeee e 166
Table 9-21 — Values of variables m and n for ctxIdx from 227 t0 275....c.ccveeoreinnieireenneiceee et 167
Table 9-22 — Values of variables m and n for ctxIdx from 277 t0 337....c.ccvveinieriniicinecnecenec et ieceeaenens 168
Table 9-23 — Values of variables m and n for ctxIdx from 338 t0 398......ccoooiiiiiiiiicice e 169

DRAFT ITU-T Rec. H.264 (2002 E) ix

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 9-24 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxIdxOffsetcccceeuenenee. 171
Table 9-25 — Bin string of the unary binarization (InfOrmative).........c.coeceriiieeiiniiniceireeeceee e 172
Table 9-26 — Binarization for macroblock types N I SHCEScevueieuirieieiieieieieieee ettt 174
Table 9-27 — Binarization for macroblock types in P, SP, and B SHCEScceoiririeiiirieicieeeeee e 175
Table 9-28 — Binarization for sub-macroblock types in P, SP, and B SIiCeScccecevereiririenieniieeececeeeececee e 176
Table 9-29 — Assignment of ctxIdxInc to binldx for all ctxIdxOffset values except those related to the syntax elements

coded block flag, significant coeff flag, last significant coeff flag, and coeff abs level minusl 178
Table 9-30 — Assignment of ctxIdxBlockCatOffset to ctxBlockCat for syntax elements coded block flag,

significant _coeff flag, last significant coeff flag, and coeff abs level minuslc.cccccovioiniiiniinncccinenens 179
Table 9-31 — Specification of ctxIdxInc for specific values of ctxIdxOffset and binldX.........ccoceverieeirinieiinieneneeeienee. 184
Table 9-32 — Specification of ctxBlockCat for the different BlOCKSccceoieirierieiiirieeieeee e 185
Table 9-33 — Specification of rangeTabLPS depending on pStateldx and qCodIRangeldX........c..ccccevevvevrenenercnenene. 188
Table 9-34 — State transition tADIEc.ccveiririeietieiesiet ettt ettt ettt e et e st et sesbe b e st eseebesbesseseesesseseesenseseeseesenseseesansan 189
Table A-1 — LV IIMES ..ottt ettt bbbt b et a e e b st ebesens 199
Table A-2 — Baseline profile 1€Vl IMILS.........coueiiiririeirii ettt ettt st et be ettt ebe st et eneeaeean 200
Table A-3 — Main Profile LeVEL LIMILSccveriiriiiieiiii ettt ettt ettt et et et et eseesseessessesseesaessensensesssessansensenns 201
Table A-4 — Extended profile 16VEl THMILSc.ecveiriiieieiiiieieieeset ettt ettt st sa s te s esese s esseseesessanseseesansas 201
Table A-5 — Maximum frame rates (frames per second) for some example frame SiZeS.........cocceveeevrererieirenieneereneeenns 202
Table D-1 — Interpretation Of PIC STIUCEc..erieiitirieieiet ettt sttt bbbttt et e b et et e st ebe st eneeseesenean 224
Table D-2 — Mapping of ¢t type t0 SOUICE PICLUIE SCAIceverueterirtiierieieriertettetertesteiestestesesteseatebesteseebesbeteseebesseseebessenees 225
Table D-3 — Definition of COUNtING tYPE VAIUESecviievieiiieiieiiieietiieie sttt ettt te et b saeteesesesessesseseesesseseeseesensas 225
Table D-4 — scene_tranSition_ tYPE VAIUES.ccveuieuirieietiieietieterietetetesie sttt te e ae st et eseste s eneeseeseneeseesenseseesesseneeseaseneas 232
Table E-1 — Meaning of sample aspect 1atio INAICALOT.ceiruirieiriirieiet ettt s ettt st eae e 241
Table E-2 — Meaning of VIAE0 fOIMALc.cccovuiiiiiiiieiciiitee ettt ettt b et b bbbttt ebe b 242
Table E-3 — COlOUL PIIMATIES.ueteietietiieietietetetietestee et etesteseesestesseseeteseneeseesesseseesessesseneesessansenseseesenseseesenseneesessenseneesensan 243
Table E-4 — Transfer CharaCteriSTICSeeriiueirieiiririeiriiicteteteietniet ettt ettt ettt ae e etenenens 244
Table E-5 — Matrix COETIICIENESc.ccviuiuiiiiiiciciiccc ettt 245
Table E-6 — Divisor for computation of Atg app(1) ..oveveviiiiiiiiiiiiiiiic s 247

X DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Foreword

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardisation Sector (ITU-T) is a permanent organ of ITU. ITU-T
is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardising telecommunications on a world-wide basis. The World Telecommunication Standardisation Assembly
(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce
Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in
WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards
are prepared on a collaborative basis with ISO and IEC.

ISO (the International Organisation for Standardisation) and IEC (the International Electrotechnical Commission) form
the specialised system for world-wide standardisation. National Bodies that are members of ISO and IEC participate in
the development of International Standards through technical committees established by the respective organisation to
deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organisations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTCI.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

This Recommendation | International Standard was prepared jointly by ITU-T SG16 Q.6, also known as VCEG (Video
Coding Experts Group), and by ISO/IEC JTC1/SC29/WGl11, also known as MPEG (Moving Picture Experts Group).
VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new video coding standard(s)
appropriate for a wide range of conversational and non-conversational services. MPEG was formed in 1988 to establish
standards for coding of moving pictures and associated audio for various applications such as digital storage media,
distribution, and communication.

In this Recommendation | International Standard Annexes A through E contain normative requirements and are an
integral part of this Recommendation | International Standard.

DRAFT ITU-T Rec. H.264 (2002 E) xi

DRAFT ISO/IEC 14496-10 : 2002 (E)

0 Introduction

This clause does not form an integral part of this Recommendation | International Standard.

0.1 Prologue
This subclause does not form an integral part of this Recommendation | International Standard.

As the costs for both processing power and memory have reduced, network support for coded video data has diversified,
and advances in video coding technology have progressed, the need has arisen for an industry standard for compressed
video representation with substantially increased coding efficiency and enhanced robustness to network environments.
Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) formed a Joint Video Team (JVT) in 2001 for development of a new Recommendation | International Standard.

0.2 Purpose
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard was developed in response to the growing need for higher compression of
moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting,
internet streaming, and communication. It is also designed to enable the use of the coded video representation in a
flexible manner for a wide variety of network environments. The use of this Recommendation | International Standard
allows motion video to be manipulated as a form of computer data and to be stored on various storage media, transmitted
and received over existing and future networks and distributed on existing and future broadcasting channels.

0.3 Applications
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:

CATV Cable TV on optical networks, copper, etc.

DBS Direct broadcast satellite video services

DSL Digital subscriber line video services

DTTB Digital terrestrial television broadcasting

ISM Interactive storage media (optical disks, etc.)

MMM Multimedia mailing

MSPN Multimedia services over packet networks

RTC Real-time conversational services (videoconferencing, videophone, etc.)
RVS Remote video surveillance

SSM Serial storage media (digital VTR, etc.)

0.4 Profiles and levels
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities, and services. Applications should cover, among other things, digital storage
media, television broadcasting and real-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets
of the syntax are also stipulated by means of "profiles" and "levels". These and other related terms are formally defined
in clause 3.

A "profile" is a subset of the entire bitstream syntax that is specified by this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the
specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement a
decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.

xii DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

In order to deal with this problem, "levels" are specified within each profile. A level is a specified set of constraints
imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on values.
Alternatively they may take the form of constraints on arithmetic combinations of values (e.g. picture width multiplied
by picture height multiplied by number of pictures decoded per second).

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to
achieve a subset of the complete syntax, flags, parameters, and other syntax elements are included in the bitstream that
signal the presence or absence of syntactic elements that occur later in the bitstream.

0.5 Overview of the design characteristics
This subclause does not form an integral part of this Recommendation | International Standard.

The coded representation specified in the syntax is designed to enable a high compression capability for a desired image
quality. The algorithm is not lossless, as the exact source sample values are typically not preserved through the encoding
and decoding processes. A number of techniques may be used to achieve highly efficient compression. The expected
encoding algorithm (not specified in this Recommendation | International Standard) selects between inter and intra
coding for block-shaped regions of each picture. Inter coding uses motion vectors for block-based inter prediction to
exploit temporal statistical dependencies between different pictures. Intra coding uses various spatial prediction modes to
exploit spatial statistical dependencies in the source signal for a single picture. Motion vectors and intra prediction modes
may be specified for a variety of block sizes in the picture. The prediction residual is then further compressed using a
transform to remove spatial correlation inside the transform block before it is quantised, producing an irreversible
process that typically discards less important visual information while forming a close approximation to the source
samples. Finally, the motion vectors or intra prediction modes are combined with the quantised transform coefficient
information and encoded using either variable length codes or arithmetic coding.

0.5.1 Predictive coding
This subclause does not form an integral part of this Recommendation | International Standard.

Because of the conflicting requirements of random access and highly efficient compression, two main coding types are
specified. Intra coding is done without reference to other pictures. Intra coding may provide access points to the coded
sequence where decoding can begin and continue correctly, but typically also shows only moderate compression
efficiency. Inter coding (predictive or bi-predictive) is more efficient using inter prediction of each block of sample
values from some previously decoded picture selected by the encoder. In contrast to some other video coding standards,
pictures coded using bi-predictive inter prediction may also be used as references for inter coding of other pictures.

The application of the three coding types to pictures in a sequence is flexible, and the order of the decoding process is
generally not the same as the order of the source picture capture process in the encoder or the output order from the
decoder for display. The choice is left to the encoder and will depend on the requirements of the application. The
decoding order is specified such that the decoding of pictures that use inter-picture prediction follows later in decoding
order than other pictures that are referenced in the decoding process.

0.5.2 Coding of progressive and interlaced video
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard specifies a syntax and decoding process for video that originated in either
progressive-scan or interlaced-scan form, which may be mixed together in the same sequence. The two fields of an
interlaced frame are separated in capture time while the two fields of a progressive frame share the same capture time.
Each field may be coded separately or the two fields may be coded together as a frame. Progressive frames are typically
coded as a frame. For interlaced video, the encoder can choose between frame coding and field coding. Frame coding or
field coding can be adaptively selected on a picture-by-picture basis and also on a more localized basis within a coded
frame. Frame coding is typically preferred when the video scene contains significant detail with limited motion. Field
coding typically works better when there is fast picture-to-picture motion.

0.5.3 Picture partitioning into macroblocks and smaller partitions
This subclause does not form an integral part of this Recommendation | International Standard.

As in previous video coding Recommendations and International Standards, a macroblock, consisting of a 16x16 block
of luma samples and two corresponding blocks of chroma samples, is used as the basic processing unit of the video
decoding process.

A macroblock can be further partitioned for inter prediction. The selection of the size of inter prediction partitions is a
result of a trade-off between the coding gain provided by using motion compensation with smaller blocks and the
quantity of data needed to represent the data for motion compensation. In this Recommendation | International Standard
the inter prediction process can form segmentations for motion representation as small as 4x4 luma samples in size, using

DRAFT ITU-T Rec. H.264 (2002 E) xiii

DRAFT ISO/IEC 14496-10 : 2002 (E)

motion vector accuracy of one-quarter of the luma sample grid spacing displacement. The process for inter prediction of
a sample block can also involve the selection of the picture to be used as the reference picture from a number of stored
previously-decoded pictures. Motion vectors are encoded differentially with respect to predicted values formed from
nearby encoded motion vectors.

Typically, the encoder calculates appropriate motion vectors and other data elements represented in the video data
stream. This motion estimation process in the encoder and the selection of whether to use inter prediction for the
representation of each region of the video content is not specified in this Recommendation | International Standard.

0.5.4 Spatial redundancy reduction
This subclause does not form an integral part of this Recommendation | International Standard.

Both source pictures and prediction residuals have high spatial redundancy. This
Recommendation | International Standard is based on the use of a block-based transform method for spatial redundancy
removal. After inter prediction from previously-decoded samples in other pictures or spatial-based prediction from
previously-decoded samples within the current picture, the resulting prediction residual is split into 4x4 blocks. These
are converted into the transform domain where they are quantised. After quantisation many of the transform coefficients
are zero or have low amplitude and can thus be represented with a small amount of encoded data. The processes of
transformation and quantisation in the encoder are not specified in this Recommendation | International Standard.

0.6 How to read this specification
This subclause does not form an integral part of this Recommendation | International Standard.

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be
read for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics)
specifies the order to parse syntax elements from the bitstream. See subclauses 7.1-7.3 for syntactical order and see
subclause 7.4 for semantics; i.e., the scope, restrictions, and conditions that are imposed on the syntax elements. The
actual parsing for most syntax elements is specified in clause 9 (Parsing process). Finally, clause 8 (Decoding process)
specifies how the syntax elements are mapped into decoded samples. Throughout reading this specification, the reader
should refer to clauses 2 (Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A through
E also form an integral part of this Recommendation | International Standard.

Annex A defines three profiles (Baseline, Main, and Extended), each being tailored to certain application domains, and
defines the so-called levels of the profiles. Annex B specifies syntax and semantics of a byte stream format for delivery
of coded video as an ordered stream of bytes. Annex C specifies the hypothetical reference decoder and its use to check
bitstream and decoder conformance. Annex D specifies syntax and semantics for supplemental enhancement information
message payloads. Finally, Annex E specifies syntax and semantics of the video usability information parameters of the
sequence parameter set.

Throughout this specification, statements appearing with the preamble "NOTE -" are informative and are not an integral
part of this Recommendation | International Standard.

Xiv DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

1 Scope

This document specifies ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 video
coding.

2 Normative references

The following Recommendations and International Standards contain provisions that, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardisation Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

— ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T defined codes for non-
standard facilities

— ISO/IEC 11578:1996, Annex A, Universal Unique Identifier
— ISO/CIE 10527:1991, Colorimetric Observers

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 access unit: A set of NAL units always containing a primary coded picture. In addition to the primary coded
picture, an access unit may also contain one or more redundant coded pictures or other NAL units not
containing slices or slice data partitions of a coded picture. The decoding of an access unit always results in a

decoded picture.

3.2 AC transform coefficient: Any fransform coefficient for which the frequency index in one or both dimensions
is non-zero.

33 adaptive binary arithmetic decoding process: An entropy decoding process that recovers the values of bins

from a bitstream produced by an adaptive binary arithmetic encoding process.

34 adaptive binary arithmetic encoding process: An entropy encoding process, not normatively specified in this
Recommendation | International Standard, that codes a sequence of bins and produces a bitstream that can be
decoded using the adaptive binary arithmetic decoding process.

35 arbitrary slice order: A decoding order of slices in which the macroblock address of the first macroblock of
some slice of a picture may be smaller than the macroblock address of the first macroblock of some other
preceding slice of the same coded picture.

3.6 B slice: A slice that may be decoded using intra prediction from decoded samples within the same slice or
inter prediction from previously-decoded reference pictures, using at most two motion vectors and reference
indices to predict the sample values of each block.

3.7 bin: One bit of a bin string.

3.8 binarization: The set of intermediate binary representations of all possible values of a syntax element.

3.9 binarization process: A unique mapping process of possible values of a syntax element onto a set of bin
strings.

3.10 bin string: A string of bins. A bit string is an intermediate binary representation of values of syntax elements.

3.11 bi-predictive slice: See B slice.

3.12 bitstream: A sequence of bits that forms the representation of coded pictures and associated data forming one
or more coded video sequence. Bitstream is a collective term used to refer either to a NAL unit stream or a byte
stream.

3.13 block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

3.14 bottom field: One of two fields that comprise a frame. Each row of a bottom field is spatially located
immediately below a corresponding row of a top field.

DRAFT ITU-T Rec. H.264 (2002 E) 1

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32
3.33

3.34

3.35
3.36
3.37

bottom macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the bottom row of samples for the macroblock pair. For a field macroblock pair, the bottom
macroblock represents the samples from the region of the bottom field of the frame that lie within the spatial
region of the macroblock pair. For a frame macroblock pair, the bottom macroblock represents the samples of
the frame that lie within the bottom half of the spatial region of the macroblock pair.

broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding order
may contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream.

byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit
on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

byte-aligned: A bit in a bitstream is byte-aligned when its position is a multiple of 8 bits from the first bit in
the bitstream.

byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified
in Annex B.

category: A number associated with each syntax element. The category is used to specify the allocation of
syntax elements to NAL units for slice data partitioning. It may also be used in a manner determined by the
application to refer to classes of syntax elements in a manner not specified in this
Recommendation | International Standard.

chroma: An adjective specifying that a sample array or single sample is representing one of the two colour
difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and
Cr.

NOTE - The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear
light transfer characteristics that is often associated with the term chrominance.

coded field: A coded representation of a field.
coded frame: A coded representation of a frame.

coded picture: A coded representation of a picture. A coded picture may be either a coded field or a coded
frame. Coded picture is a collective term referring to a primary coded picture or a redundant coded picture, but
not to both together.

coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in
the hypothetical reference decoder in Annex C.

coded representation: A data element as represented in its coded form.

coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit
followed zero or more non-IDR access units including all subsequent access units up to but not including any
subsequent IDR access unit.

component: An array or single sample from one of the three arrays (luma and two chroma) that make up a
field or frame.

complementary non-reference field pair: Two non-reference fields that are in consecutive access units in
decoding order as two coded fields of opposite parity where the first field is not already a paired field.

complementary reference field pair: Two reference fields that are in consecutive access units in decoding
order as two coded fields and share the same value of frame number.

context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an
equation containing recently decoded bins.

DC transform coefficient: A transform coefficient for which the firequency index is zero in all dimensions.

decoded picture: A decoded picture is derived by decoding a coded picture. A decoded picture is either a
decoded frame, or a decoded field. A decoded field is either a decoded top field or a decoded bottom field.

decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output
delay specified for the hypothetical reference decoder in Annex C.

decoder: An embodiment of a decoding process.
decoding order: The order in which syntax elements are processed by the decoding process.

decoding process: The process specified in this Recommendation | International Standard that reads a
bitstream and produces decoded pictures.

DRAFT ITU-T Rec. H.264 (2002 E)

3.38

3.39

3.40

341

3.42

3.43

3.44

3.45

3.46

3.47
3.48

3.49

3.50
3.51

3.52

3.53

3.54

3.55

3.56

3.57
3.58

3.59
3.60
3.61

DRAFT ISO/IEC 14496-10 : 2002 (E)
direct prediction: An inter prediction for a block for which no motion vector is decoded. Two direct
prediction modes are specified that are referred to as spatial direct prediction and temporal prediction mode.

decoder under test (DUT): A decoder that is tested for conformance to this Recommendation | International
Standard by operating the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and
to the hypothetical reference decoder and comparing the values and timing of the output of the two decoders.

emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of
emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit
contains a start code prefix.

encoder: An embodiment of an encoding process.

encoding process: A process, not specified in this Recommendation | International Standard, that produces a
bitstream conforming to this Recommendation | International Standard.

field: An assembly of alternate rows of a frame. A frame is composed of two fields, a top field and a bottom
field.

field macroblock: A macroblock containing samples from a single field. All macroblocks of a coded field are
field macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded
frame may be field macroblocks.

field macroblock pair: A macroblock pair decoded as two field macroblocks.

field scan: A specific sequential ordering of transform coefficients that differs from the zig-zag scan by
scanning columns more rapidly than rows. Field scan is used for transform coefficients in field macroblocks.

flag: A variable that can take one of the two possible values 0 and 1.

frame: A frame contains an array of luma samples and two corresponding arrays of chroma samples. A frame
consists of two fields, a top field and a bottom field.

frame macroblock: A macroblock representing samples from two fields of a coded frame. When macroblock-
adaptive frame/field decoding is not in use, all macroblocks of a coded frame are frame macroblocks. When
macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded frame may be frame
macroblocks.

frame macroblock pair: A macroblock pair decoded as two firame macroblocks.

frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to
an inverse transform part of the decoding process.

hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the
variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce.

hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of the
input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the conformance of
a bitstream or a decoder-.

I slice: A slice that is decoded using prediction only from decoded samples within the same slice.

instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an
IDR picture.

instantaneous decoding refresh (IDR) picture: A coded picture containing only slices with I or SI slice types
that causes the decoding process to mark all reference pictures as "unused for reference” immediately after
decoding the IDR picture. After the decoding of an IDR picture all following coded pictures in decoding order
can be decoded without inter prediction from any picture decoded prior to the IDR picture. The first picture of
each coded video sequence is an IDR picture.

inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

inter prediction: A prediction derived from decoded samples of reference pictures other than the current
decoded picture.

intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.
intra prediction: A prediction derived from the decoded samples of the same decoded slice.

intra slice: See I slice.

DRAFT ITU-T Rec. H.264 (2002 E) 3

3.62

3.63

3.64

3.65

3.66

3.67

3.68

3.69

3.70

3.71

3.72

3.73

3.74

3.75

3.76

3.77

3.78

3.79
3.80

inverse transform: A part of the decoding process by which a set of transform coefficients are converted into
spatial-domain values, or by which a set of transform coefficients are converted into DC transform coefficients.

layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain
lower layers. The coding layers are the coded video sequence, picture, slice, and macroblock layers.

level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this
Recommendation | International Standard. The same set of levels is defined for all profiles, with most aspects
of the definition of each level being in common across different profiles. Individual implementations may,
within specified constraints, support a different level for each supported profile. In a different context, level is
the value of a transform coefficient prior to scaling.

list 0 (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture
list 0 (list 1).

list 0 (list 1) prediction: Inter prediction of the content of a slice using a reference index pointing into
reference picture list 0 (list I).

luma: An adjective specifying that a sample array or single sample is representing the monochrome signal
related to the primary colours. The symbol used for lumais Y.

NOTE — The term luma is used rather than the term luminance in order to avoid the implication of the use of linear
light transfer characteristics that is often associated with the term luminance.

macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples. The division
of a slice or a macroblock pair into macroblocks is a partitioning.

macroblock-adaptive frame/field decoding: A decoding process for coded frames in which some
macroblocks may be decoded as frame macroblocks and others may be decoded as field macroblocks.

macroblock address: When macroblock-adaptive frame/field decoding is not in use, a macroblock address is
the index of a macroblock in a macroblock raster scan of the picture starting with zero for the top-left
macroblock in a picture. When macroblock-adaptive frame/field decoding is in use, the macroblock address of
the top macroblock of a macroblock pair is two times the index of the macroblock pair in a macroblock pair
raster scan of the picture, and the macroblock address of the bottom macroblock of a macroblock pair is the
macroblock address of the corresponding top macroblock plus 1. The macroblock address of the top
macroblock of each macroblock pair is an even number and the macroblock address of the bottom macroblock
of each macroblock pair is an odd number.

macroblock location: The two-dimensional coordinates of a macroblock in a picture denoted by (x,y). For
the top left macroblock of the picture (x,y) is equal to (0, 0). x is incremented by 1 for each macroblock
column from left to right. When macroblock-adaptive frame/field decoding is not in use, y is incremented by 1
for each macroblock row from top to bottom. When macroblock-adaptive frame/field decoding is in use, y is
incremented by 2 for each macroblock pair row from top to bottom, and is incremented by an additional 1
when a macroblock is a bottom macroblock.

macroblock pair: A pair of vertically contiguous macroblocks in a frame that is coupled for use in
macroblock-adaptive frame/field decoding processing. The division of a slice into macroblock pairs is a
partitioning.

macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a macroblock for inter prediction.

macroblock to slice group map: A means of mapping macroblocks of a picture into slice groups. The
macroblock to slice group map consists of a list of numbers, one for each coded macroblock, specifying the
slice group to which each coded macroblock belongs.

map unit to slice group map: A means of mapping slice group map units of a picture into slice groups. The
map unit to slice group map consists of a list of numbers, one for each slice group map unit, specifying the
slice group to which each coded slice group map unit belongs.

memory management control operation: Seven operations that control reference picture marking.

motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates
in the decoded picture to the coordinates in a reference picture.

NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that
data in the form of an RBSP interspersed as necessary with emulation prevention bytes.

NAL unit stream: A sequence of NAL units.

non-paired reference field: A decoded reference field that is not part of a complementary reference field pair.

DRAFT ITU-T Rec. H.264 (2002 E)

3.81

3.82

3.83

3.84

3.85

3.86
3.87

3.88

3.89

3.90

391

3.92
3.93

3.94

3.95
3.96
3.97

3.98

3.99

3.100

3.101

3.102

3.103

DRAFT ISO/IEC 14496-10 : 2002 (E)

non-reference picture: A picture coded with nal _ref idc equal to 0. A non-reference picture is not used for
inter prediction of any other pictures.

opposite parity: The opposite parity of top is bottom, and vice versa.
output order: The order in which the decoded pictures are output from the decoded picture buffer.

P slice: A slice that may be decoded using intra prediction from decoded samples within the same slice or inter
prediction from previously-decoded reference pictures, using at most one motion vector and reference index to
predict the sample values of each block.

parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used as
part of the defined term quantisation parameter.

parity: The parity of a field can be top or bottom.

partitioning: The division of a set into subsets such that each element of the set is in exactly one of the
subsets.

picture: A collective term for a field or a frame.

picture order count: A variable having a value that increases with increasing picture position in output order
relative to the previous /DR picture in decoding order or relative to the previous picture containing the memory
management control operation that marks all reference pictures as “unused for reference”.

prediction: An embodiment of the prediction process.

prediction process: The use of a predictor to provide an estimate of the sample value or data element currently
being decoded.

predictive slice: See P slice.

predictor: A combination of previously decoded sample values or data elements used in the decoding process
of subsequent sample values or data elements.

primary coded picture: The coded representation of a picture to be used by the decoding process for a
bitstream conforming to this Recommendation | International Standard. The primary coded picture contains all
macroblocks of the picture. The only pictures that have a normative effect on the decoding process are primary
coded pictures. See also redundant coded picture.

profile: A specified subset of the syntax of this Recommendation | International Standard.
quantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.

random access: The act of starting the decoding process for a bitstream at a point other than the beginning of
the stream.

raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the
first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned
from left to right, followed similarly by the second, third, etc. rows of the pattern (going down) each scanned
from left to right.

raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is
encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax
elements followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0.

raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload
(RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be
identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the
RBSP.

recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation of
the decoded pictures represented by the bitstream is achieved after a random access or broken link.

redundant coded picture: A coded representation of a picture or a part of a picture. The content of a
redundant coded picture shall not be used by the decoding process for a bitstream conforming to this
Recommendation | International Standard. A redundant coded picture is not required to contain all
macroblocks in the primary coded picture. Redundant coded pictures have no normative effect on the
decoding process. See also primary coded picture.

reference field: A reference field may be used for inter prediction when P, SP, and B slices of a coded field or
field macroblocks of a coded frame are decoded. See also reference picture.

DRAFT ITU-T Rec. H.264 (2002 E) 5

3.104

3.105
3.106

3.107

3.108

3.109

3.110

3.111

3.112
3.113

3.114

3.115

3.116

3.117

3.118

3.119

3.120

3.121
3.122

3.123

reference frame: A reference frame may be used for inter prediction when P, SP, and B slices of a coded
frame are decoded. See also reference picture.

reference index: An index into a reference picture list.

reference picture: A picture with nal ref idc not equal to 0. A reference picture contains samples that may
be used for inter prediction in the decoding process of subsequent pictures in decoding order.

reference picture list: A list of short-term picture numbers and long-term picture numbers that are assigned to
reference pictures.

reference picture list 0: A reference picture list used for inter prediction of a P, B, or SP slice. All inter
prediction used for P and SP slices uses reference picture list 0. Reference picture list 0 is one of two
reference picture lists used for inter prediction for a B slice, with the other being reference picture list 1.

reference picture list 1: A reference picture list used for inter prediction of a B slice. Reference picture list 1
is one of two lists of reference picture lists used for inter prediction for a B slice, with the other being
reference picture list 0.

reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter
prediction.

reserved: The term “reserved”, when used in the clauses specifying some values of a particular syntax element,
means that these values shall not be used in bitstreams conforming to this
Recommendation | International Standard, but may be used in future extensions of this
Recommendation | International Standard by ITU-T | ISO/IEC.

residual: The decoded difference between a prediction of a sample or data element and its decoded value.

run: A number of consecutive data elements represented in the decoding process. In one context, the number
of zero-valued transform coefficient levels preceding a non-zero transform coefficient level in the list of
transform coefficient levels generated by a zig-zag scan or a field scan. In other contexts, run refers to a
number of macroblocks.

sample aspect ratio: Specifies, for assisting the display process, which is not specified in this
Recommendation | International Standard, the ratio between the intended horizontal distance between the
columns and the intended vertical distance between the rows of the /uma sample array in a frame. Sample
aspect ratio is expressed as A:v, where 4 is horizontal width and v is vertical height (in arbitrary units of spatial
distance).

scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.

SI slice: A slice that is coded using prediction only from decoded samples within the same s/ice and using
quantisation of the prediction samples. An SI slice can be coded such that its decoded samples can be
constructed identically to an SP slice.

skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is
to be decoded as "skipped". This indication may be common to several macroblocks.

slice: An integer number of macroblocks or macroblock pairs ordered consecutively in the raster scan within a
particular slice group. For the primary coded picture, the division of each slice group into slices is a
partitioning. Although a slice contains macroblocks or macroblock pairs that are consecutive in the raster scan
within a slice group, these macroblocks or macroblock pairs are not necessarily consecutive in the raster scan
within the picture. The addresses of the macroblocks are derived from the address of the first macroblock in a
slice (as represented in the slice header) and the macroblock to slice group map.

slice data partitioning: A method of partitioning selected syntax elements into syntax structures based on a
category associated with each syntax element.

slice group: A subset of the macroblocks or macroblock pairs of a picture. The division of the picture into
slice groups is a partitioning of the picture. The partitioning is specified by the macroblock to slice group map.

slice group map units: The units of the map unit to slice group map.

slice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks
represented in the slice.

source: Term used to describe the video material or some of its attributes before encoding.

DRAFT ITU-T Rec. H.264 (2002 E)

3.124

3.125

3.126

3.127

3.128

3.129
3.130
3.131
3.132
3.133

3.134

3.135

3.136

3.137

3.138

3.139

4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

DRAFT ISO/IEC 14496-10 : 2002 (E)

SP slice: A slice that is coded using inter prediction from previously-decoded reference pictures, using at most
one motion vector and reference index to predict the sample values of each block. An SP slice can be coded
such that its decoded samples can be constructed identically to another SP slice or an S/ slice.

start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a
prefix to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning
of a new NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within
NAL units by the inclusion of emulation prevention bytes.

string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a
raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit
is considered to be the first and most significant bit, and the right-most bit is considered to be the last and least
significant bit.

sub-macroblock: One quarter of the samples of a macroblock, i.e., an 8x8 luma block and two 4x4 chroma
blocks of which one corner is located at a corner of the macroblock.

sub-macroblock partition: A block of luma samples and two corresponding blocks of chroma samples
resulting from a partitioning of a sub-macroblock for inter prediction.

switching I slice: See SI slice.

switching P slice: See SP slice.

syntax element: An element of data represented in the bitstream.

syntax structure: Zero or more syntax elements present together in the bitstream in a specified order.

top field: One of two fields that comprise a frame. Each row of a top field is spatially located immediately
above the corresponding row of the bottom field.

top macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the samples
in the top row of samples for the macroblock pair. For a field macroblock pair, the top macroblock represents
the samples from the region of the top field of the frame that lie within the spatial region of the macroblock
pair. For a frame macroblock pair, the top macroblock represents the samples of the frame that lie within the
top half of the spatial region of the macroblock pair.

transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a
particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding
process.

transform coefficient level: An integer quantity representing the value associated with a particular two-
dimensional frequency index in the decoding process prior to scaling for computation of a transform
coefficient value.

universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal
unique identifiers.

variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to
symbols expected to be more frequent and longer bit strings to symbols expected to be less frequent.

zig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest
spatial frequency to the highest. Zig-zag scan is used for transform coefficient levels in frame macroblocks.

Abbreviations

CABAC: Context-based Adaptive Binary Arithmetic Coding
CAVLC: Context-based Adaptive Variable Length Coding
CBR: Constant Bit Rate

CPB: Coded Picture Buffer

DPB: Decoded Picture Buffer

DUT: Decoder under test

FIFO: First-In, First-Out

HRD: Hypothetical Reference Decoder

DRAFT ITU-T Rec. H.264 (2002 E) 7

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

HSS: Hypothetical Stream Scheduler

IDR: Instantaneous Decoding Refresh

LSB: Least Significant Bit

MB: Macroblock

MBAFF: Macroblock-Adaptive Frame-Field Coding
MSB: Most Significant Bit

NAL: Network Abstraction Layer

RBSP: Raw Byte Sequence Payload

SEI: Supplemental Enhancement Information
SODB: String Of Data Bits

UUID: Universal Unique Identifier

VBR: Variable Bit Rate

VCL: Video Coding Layer

VLC: Variable Length Coding

VUI: Video Usability Information

Conventions

NOTE - The mathematical operators used in this Specification are similar to those used in the C programming language. However,
integer division and arithmetic shift operations are specifically defined. Numbering and counting conventions generally begin
from 0.

5.1

Arithmetic operators

The following arithmetic operators are defined as follows.

+ Addition

- Subtraction (as a two-argument operator) or negation (as a unary prefix operator)

* Multiplication

x7¥ Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for

superscripting not intended for interpretation as exponentiation.

/ Integer division with truncation of the result toward zero. For example, 7/4 and —7/—4 are truncated to 1
and —7/4 and 7/—4 are truncated to —1.

Used to denote division in mathematical equations where no truncation or rounding is intended.

Used to denote division in mathematical equations where no truncation or rounding is intended.

< | =

y
Z f (i) The summation of f(i) with i taking all integer values from x up to and including y.

i=x

x%y Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0.

When order of precedence is not indicated explicitly by use of parenthesis, the following rules apply

5.2

— multiplication and division operations are considered to take place before addition and subtraction
— multiplication and division operations in sequence are evaluated sequentially from left to right

— addition and subtraction operations in sequence are evaluated sequentially from left to right

Logical operators

The following logical operators are defined as follows

x && y Boolean logical "and" of x and y

DRAFT ITU-T Rec. H.264 (2002 E)

53

x|y
!

x?y:z

DRAFT ISO/IEC 14496-10 : 2002 (E)

Boolean logical "or" of x and y
Boolean logical "not"

If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z

Relational operators

The following relational operators are defined as follows

54

Greater than

Greater than or equal to
Less than

Less than or equal to
Equal to

Not equal to

Bit-wise operators

The following bit-wise operators are defined as follows

5.5

&

x>>y

x<<y

Bit-wise "and". When operating on integer arguments, operates on a two's complement representation
of the integer value.

Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of
the integer value.

Arithmetic right shift of a two’s complement integer representation of x by y binary digits. This
function is defined only for positive values of y. Bits shifted into the MSBs as a result of the right shift
shall have a value equal to the MSB of x prior to the shift operation.

Arithmetic left shift of a two’s complement integer representation of x by y binary digits. This function
is defined only for positive values of y. Bits shifted into the LSBs as a result of the left shift have a
value equal to 0.

Assignment operators

The following arithmetic operators are defined as follows

5.6

++

Assignment operator.

Increment, i.e., x++ is equivalent to x = x + 1; when used in an array index, evaluates to the value of the
variable prior to the increment operation.

Decrement, i.e., x—— is equivalent to x = x — 1; when used in an array index, evaluates to the value of
the variable prior to the decrement operation.

Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (-3) is equivalent
tox =x+(-3).

Decrement by amount specified, i.e., x — 3 is equivalent to x = x — 3, and x — (-3) is equivalent
tox=x—(-3).

Range notation

The following notation is used to specify a range of values

5.7

X =Yy ..z X takes on integer values starting from y to z inclusive, with x, y, and z being integer numbers.

Mathematical functions

The following mathematical functions are defined as follows

Abs(x)= | X 5 x>=0 (5-1)
-x ; x<0
Ceil(x) the smallest integer greater than or equal to x. (5-2)

DRAFT ITU-T Rec. H.264 (2002 E) 9

Clipl(x) = Clip3(0, 255, x) (5-3)

X ; z<x
Clipd(x,y.2)=]y ; z>y (5-4)

z ; otherwise

Floor(x) the greatest integer less than or equal to x. (5-5)

(a%(d /b)) *b;, e==
InverseRasterScan(a, b, c,d, e)= (5-6)
(al(d/b))*c; e==

Log2(x) returns the base-2 logarithm of x. 5-7
Logl0(x) returns the base-10 logarithm of x. (5-8)
Luma4x4BlkScan(x,y)=(x/2)*4+(y/2)* 8+ RasterScan(x %2,y % 2,2) 5-9)
Median(x,y,z)=x+y+z—Min(x, Min(y, z)) —Max(x, Max(y,z)) (5-10)
Min(x,y)=4% * *<7¥ (5-11)
y 5 X>Yy
. >
Max(x,y)=1" °> 7Y (5-12)
y 5 X<Y
RasterScan(x,y, n,) =x+y * ny (5-13)
Round(x) = Sign(x) * Floor(Abs(x)+0.5) (5-14)
Sign(x)=J 1 3 x>=0 (5-15)
-1 ; x<0
Sqrt(x) = x (5-16)
5.8 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower
case letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of
coded representation. The decoding process behaves according to the value of the syntax element and to the values of
previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears
in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such
variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any
underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax
structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding
process for later syntax structures mentioning the originating syntax structure of the variable. Variables starting with a
lower case letter are only used within the subclause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their
numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of
values and names is specified in the text. The names are constructed from one or more groups of letters separated by an
underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE - The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions are described by their names, which are constructed as syntax element names, with left and right round
parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more
than one variable).

10 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Square parentheses are used for indexing in lists or arrays. Lists or arrays can either be syntax elements or variables.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001'
represents an eight-bit string having only its second and its last bits equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation
when the number of bits is a multiple of 4. For example, 0x41 represents an eight-bit string having only its second and
its last bits equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any other value
different than zero.

5.9 Text description of logical operations

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
statement 0

else if (condition 1)
statement 1

else /* informative remark on remaining condition */
statement n

may be described in the following manner:
— If condition 0, statement 0

— If condition 1, statement 1

Otherwise (informative remark on remaining condition), statement n

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0a && condition 0b)
statement 0

else if (condition 1a || condition 1b)
statement 1

else
statement n
may be described in the following manner:

— Ifall of the following conditions are true, statement 0
— condition Oa
— condition Ob

— Ifany of the following conditions are true, statement 1
— condition la
— condition 1b

— Otherwise, statement n

In the text, a statement of logical operations as would be described in pseudo-code as
if(condition 0)
statement 0

if (condition 1)
statement 1

may be described in the following manner:

When condition 0, statement 0

DRAFT ITU-T Rec. H.264 (2002 E) 11

When condition 1, statement 1

5.10 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are
available in the process specification and invoking. A process specification may also have a lower case variable
explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable
that can either be an upper case variable or a lower case variable. If invoking a process, variables are explicitly assigned
to lower case input or output variables of the process specification in case these do not have the same name. Otherwise
(when the variables at the invoking and specification have the same name), assignment is implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to
the address of the specific macroblock.

6 Source, coded, decoded, output data formats, scanning processes, and neighbouring
relationships
6.1 Bitstream formats

This subclause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to as
the bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream
format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This
sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL
units in the NAL unit stream.

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding
order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes.
The NAL unit stream format can be extracted from the byte stream format by searching for the location of the unique
start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than use of the
byte stream format are outside the scope of this Recommendation | International Standard. The byte stream format is
specified in Annex B.

6.2 Source, decoded, and output picture formats
This subclause specifies the relationship between source and decoded frames and fields that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of either or both frames or fields (called collectively
pictures) in decoding order.

The source and decoded pictures (frames or fields) are each comprised of three sample arrays, one luma and two chroma
sample arrays.

The variable ChromaFormatFactor is specified in Table 6-1, depending on the chroma format sampling structure. The
value of ChromaFormatFactor shall be inferred equal to 1.5, indicating 4:2:0 sampling. In monochrome sampling there is
only one sample array, which may nominally be considered a luma array. In 4:2:0 sampling, each of the two chroma
arrays has half the height and half the width of the luma array. In 4:2:2 sampling, each of the two chroma arrays has the
same height and half the width of the luma array. In 4:4:4 sampling, each of the two chroma arrays has the same height
and width as the luma array.

NOTE - Other values may be valid for future versions of this Recommendation | International Standard.

Table 6-1 — ChromaFormatFactor values

Chroma
Format ChromaFormatFactor
monochrome 1
4:2:0 1.5
4:2:2 2

12 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

4:4:4 3

The width and height of the luma sample array are each a multiple of 16. This Recommendation | International Standard
represents colour sequences using 4:2:0 chroma sampling. The width and height of chroma sample arrays are each a
multiple of 8. The height of a luma array that is coded as two separate fields or in macroblock-adaptive frame-field
coding (see below) is a multiple of 32 samples. The height of each chroma array that is coded as two separate fields or in
macroblock-adaptive frame-field coding (see below) is a multiple of 16 samples. The width or height of pictures output
from the decoding process need not be a multiple of 16 and can be specified using a cropping rectangle.

The width of fields coded referring to a specific sequence parameter set is the same as that of frames coded referring to
the same sequence parameter set (see below). The height of fields coded referring to a specific sequence parameter set is
half that of frames coded referring to the same sequence parameter set (see below).

The nominal vertical and horizontal relative locations of luma and chroma samples in frames are shown in Figure 6-1.
Alternative chroma sample relative locations may be indicated in video usability information (see Annex E).

X X X X X X

O o O (XX}
X X X X X X

X X X X X X

o o @)

X X X X X X

X X X X X X

o O @)

X X X X X X

Guide:

X =Location of luma sample

QO = Location of chroma sample

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame

A frame consists of two fields as described below. A coded picture may represent a coded frame or an individual coded
field. A coded video sequence conforming to this Recommendation | International Standard may contain arbitrary
combinations of coded frames and coded fields. The decoding process is also specified in a manner that allows smaller
regions of a coded frame to be coded either as a frame or field region, by use of macroblock-adaptive frame-field coding.

Source and decoded fields are one of two types: top field or bottom field. When two fields are output at the same time, or
are combined to be used as a reference frame (see below), the two fields (which shall be of opposite parity) are
interleaved. The first (i.e., top), third, fifth, etc. rows of a decoded frame are the top field rows. The second, fourth, sixth,
etc. rows of a decoded frame are the bottom field rows. A top field consists of only the top field rows of a decoded
frame. When the top field or bottom field of a decoded frame is used as a reference field (see below) only the even rows
(for a top field) or the odd rows (for a bottom field) of the decoded frame are used.

The nominal vertical and horizontal relative locations of luma and chroma samples in top and bottom fields are shown in
Figure 6-2. The nominal vertical sampling relative locations of the chroma samples in a top field are specified as shifted
up by one-quarter luma sample height relative to the field-sampling grid. The vertical sampling locations of the chroma
samples in a bottom field are specified as shifted down by one-quarter luma sample height relative to the field-sampling
grid. Alternative chroma sample relative locations may be indicated in the video usability information (see Annex E).

NOTE - The shifting of the chroma samples is in order for these samples to align vertically to the usual location relative to the
full-frame sampling grid as shown in Figure 6-1.

DRAFT ITU-T Rec. H.264 (2002 E) 13

O X
O X
O X

QO O O
X X X X X X
X X X X X X
O O O
X X X X X X
%) e
; Top field . ; Bottom field .
Guide: Guide:
X = Location of luma sample X = Location of luma sample
O = Location of chroma sample O = Location of chroma sample
Figure 6-2 — Nominal vertical and horizontal sampling locations of samples top and bottom fields.
6.3 Spatial subdivision of pictures and slices

This subclause specifies how a picture is partitioned into slices and macroblocks. Pictures are divided into slices. A slice
is a sequence of macroblocks, or, when macroblock-adaptive frame/field decoding is in use, a sequence of macroblock
pairs.

Each macroblock is comprised of one 16x16 luma and two 8x8 chroma sample arrays. When macroblock-adaptive
frame/field decoding is not in use, each macroblock represents a spatial rectangular region of the picture. For example, a
picture may be divided into two slices as shown in Figure 6-3.

Figure 6-3 — A picture with 11 by 9 macroblocks that is partitioned into two slices

When macroblock-adaptive frame/field decoding is in use, the picture is partitioned into slices containing an integer
number of macroblock pairs as shown in Figure 6-4. Each macroblock pair consists of two macroblocks.

14 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

~

A macroblock pair

Figure 6-4 — Partitioning of the decoded frame into macroblock pairs.

6.4 Inverse scanning processes and derivation processes for neighbours

This subclause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes
for neighbours.

6.4.1 Inverse macroblock scanning process
Input to this process is a macroblock address mbAddr.

Output of this process is the location (x,y) of the upper-left luma sample for the macroblock with address mbAddr
relative to the upper-left sample of the picture.

The inverse macroblock scanning process is specified as follows.

- If MbaffFrameFlag is equal to 0,

x = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples;, 0) (6-1)
y = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples;, 1) (6-2)

- Otherwise (MbaffFrameFlag is equal to 1), the following applies.

xO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples;, 0) (6-3)

yO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples;, 1) (6-4)
- Ifthe current macroblock is a frame macroblock

x =x0 (6-5)

y=yO + (mbAddr%2) * 16 (6-6)
- Otherwise (the current macroblock is a field macroblock),

x =x0 (6-7)

y=yO + (mbAddr % 2) (6-8)

6.4.2 Inverse macroblock partition and sub-macroblock partition scanning process

Macroblocks or sub-macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in
Figure 6-5. The outer rectangles refer to the samples in a macroblock or sub-macroblock, respectively. The rectangles
refer to the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or
inverse sub-macroblock partition scan.

DRAFT ITU-T Rec. H.264 (2002 E) 15

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width and
height of macroblock partitions and sub-macroblock partitions are specified in Table 7-10, Table 7-11, Table 7-14, and
Table 7-15. MbPartWidth() and MbPartHeight() are set to appropriate values for each macroblock, depending on the
macroblock type. SubMbPartWidth() and SubMbPartHeight() are set to appropriate values for each sub-macroblock of

a macroblocks with mb_type equal to P_8x8, P_8x8ref0, or B_8x8, depending on the sub-macroblock type.

1 macroblock partition of
16*16 luma samples and
associated chroma samples

2 macroblock partitions of
16*8 luma samples and
associated chroma samples

2 macroblock partitions of
8*16 luma samples and
associated chroma samples

4 sub-macroblocks of
8*8 luma samples and
associated chroma samples

0 0 1
Macroblock
partitions 0 0 1
1 2 3
1 sub-macroblock partition 2 sub-macroblock partitions 2 sub-macroblock partitions | 4 sub-macroblock partitions
of 8*8 luma samples and of 8*4 luma samples and of 4*8 luma samples and of 4*4 luma samples and
associated chroma samples associated chroma samples |associated chroma samples |associated chroma samples
Sub-macroblock 0 0 1
partitions 0 0 1

Figure 6-5 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock
partition scans.

6.4.2.1 Inverse macroblock partition scanning process
Input to this process is the index of a macroblock partition mbPartIdx.

Output of this process is the location (X,y) of the upper-left luma sample for the macroblock partition mbPartldx
relative to the upper-left sample of the macroblock.

The inverse macroblock partition scanning process is specified by

x = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 0) (6-9)

y = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 1) (6-10)

6.4.2.2 Inverse sub-macroblock partition scanning process

Inputs to this process are the index of a macroblock partition mbPartldx and the index of a sub-macroblock partition
subMbPartIdx.

Output of this process is the location (X,y) of the upper-left luma sample for the sub-macroblock partition
subMbPartIdx relative to the upper-left sample of the sub-macroblock.

The inverse sub-macroblock partition scanning process is specified as follows.

- Ifmb_typeis equal to P_8x8, P_8x8ref0, or B_8x§,

x = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),

SubMbPartHeight(sub_mb_type[mbPartldx |), 8, 0) (6-11)
y = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),
SubMbPartHeight(sub_mb_type[mbPartldx |), 8, 1) (6-12)
- Otherwise,
x = InverseRasterScan(subMbPartldx, 4, 4, 8, 0) (6-13)

16 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
y = InverseRasterScan(subMbPartldx, 4, 4, 8, 1) (6-14)

6.4.3 Inverse 4x4 luma block scanning process
Input to this process is the index of a 4x4 luma block luma4x4BIlkIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the 4x4 luma block with index
luma4x4BIkIdx relative to the upper-left luma sample of the macroblock.

Figure 6-6 shows the scan for the 4x4 luma blocks.

101114 (15

Figure 6-6 — Scan for 4x4 luma blocks.

The inverse 4x4 luma block scanning process is specified by

x = InverseRasterScan(luma4x4Blkldx / 4, 8, 8, 16, 0) + InverseRasterScan(luma4x4Blkldx % 4, 4,4, 8,0) (6-15)
y = InverseRasterScan(luma4x4Blkldx / 4, 8, 8, 16, 1) + InverseRasterScan(luma4x4Blkldx % 4,4, 4,8, 1) (6-16)

6.4.4 Derivation process of the availability for macroblock addresses
Input to this process is a macroblock address mbAddr.

Output of this process is the availability of the macroblock mbAddr.
NOTE - The meaning of availability is determined when this process is invoked.

The macroblock is marked as available, unless one of the following conditions is true in which case the macroblock shall
be marked as not available:

- mbAddr<0
- mbAddr > CurrMbAddr

- the macroblock with address mbAddr belongs to a different slice than the current slice

6.4.5 Derivation process for neighbouring macroblock addresses and their availability

This process can only be invoked when MbaffFrameFlag is equal to 0.

The outputs of this process are

- mbAddrA: the address and availability status of the macroblock to the left of the current macroblock.

- mbAddrB: the address and availability status of the macroblock above the current macroblock.

- mbAddrC: the address and availability status of the macroblock above-right of the current macroblock.
- mbAddrD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 6-7 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

mbAddrD | mbAddrB mbAddrC

mbAddrA | CurrMbAddr

DRAFT ITU-T Rec. H.264 (2002 E) 17

Figure 6-7 — Neighbouring macroblocks for a given macroblock

Input to the process in subclause 6.4.4 is mbAddrA = CurrMbAddr— 1 and the output is whether the macroblock
mbAddrA is available. In addition, mbAddrA is marked as not available when CurrMbAddr % PicWidthInMbs is equal
to 0.

Input to the process in subclause 6.4.4 is mbAddrB = CurrMbAddr — PicWidthInMbs and the output is whether the
macroblock mbAddrB is available.

Input to the process in subclause 6.4.4 is mbAddrC = CurrMbAddr — PicWidthInMbs + 1 and the output is whether the
macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr + 1) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.4 is mbAddrD = CurrMbAddr — PicWidthInMbs - 1 and the output is whether the
macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
CurrMbAddr % PicWidthInMbs is equal to 0.

6.4.6 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames
This process can only be invoked when MbaffFrameFlag is equal to 1.
The outputs of this process are

- mbAddrA: the address and availability status of the top macroblock of the macroblock pair to the left of the current
macroblock pair.

- mbAddrB: the address and availability status of the top macroblock of the macroblock pair above the current
macroblock pair.

- mbAddrC: the address and availability status of the top macroblock of the macroblock pair above-right of the
current macroblock pair.

- mbAddrD: the address and availability status of the top macroblock of the macroblock pair above-left of the current
macroblock pair.

Figure 6-8 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

mbAddrA, mbAddrB, mbAddrC, and mbAddrD have identical values regardless whether the current macroblock is the
top or the bottom macroblock of a macroblock pair.

mbAddrD mbAddrB mbAddrC

CurrMbAddr

Figure 6-8 — Neighbouring macroblocks for a given macroblock in MBAFF frames

Input to the process in subclause 6.4.4 is mbAddrA =2 * (CurrMbAddr/2—1) and the output is whether the
macroblock mbAddrA is available. In addition, mbAddrA is marked as not available when
(CurrMbAddr / 2) % PicWidthInMbs is equal to O.

Input to the process in subclause 6.4.4 is mbAddrB =2 * (CurrMbAddr / 2 — PicWidthInMbs) and the output is whether
the macroblock mbAddrB is available.

18 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Input to the process in subclause 6.4.4 is mbAddrC =2 * (CurrMbAddr / 2 — PicWidthInMbs + 1) and the output is
whether the macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrtMbAddr / 2 + 1) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.4 is mbAddrD =2 * (CurrMbAddr / 2 — PicWidthInMbs - 1) and the output is
whether the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
(CurrMbAddr / 2) % PicWidthInMbs is equal to 0.

6.4.7 Derivation processes for neighbouring macroblocks, blocks, and partitions
Subclause 6.4.7.1 specifies the derivation process for neighbouring macroblocks.
Subclause 6.4.7.2 specifies the derivation process for neighbouring 8x8 luma blocks.
Subclause 6.4.7.3 specifies the derivation process for neighbouring 4x4 luma blocks.
Subclause 6.4.7.4 specifies the derivation process for neighbouring 4x4 chroma blocks.
Subclause 6.4.7.5 specifies the derivation process for neighbouring partitions.

Table 6-2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N in
mbAddrN, mbPartldxN, subMbPartldxN, luma8x8BlkIdxN, luma4x4BIlkIdxN, and chroma4x4BlkIdxN for the output.
These input and output assignments are used in subclauses 6.4.7.1 to 6.4.7.5. The variable predPartWidth is specified
when Table 6-2 is referred to.

Table 6-2 — Specification of input and output assignments for subclauses 6.4.7.1 to 6.4.7.5

N xD yD
A -1 0
B 0 -1
C | predPartWidth -1
D -1 -1

Figure 6-9 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the
current macroblock, partition, or block, when the current macroblock, partition, or block is in frame coding mode.

D B C
A Current
Macroblock
or Partition
or Block

Figure 6-9 — Determination of the neighbouring macroblock, blocks, and partitions (informative)

6.4.7.1 Derivation process for neighbouring macroblocks

Outputs of this process are

- mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status and
- mbAddrB: the address of the macroblock above the current macroblock and its availability status.
mbAddrN (with N being A or B) is derived as follows.

- The difference of luma location (xD, yD) is set according to Table 6-2.

DRAFT ITU-T Rec. H.264 (2002 E) 19

- The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) equal to (xD, yD), and the output is assigned to mbAddrN.

6.4.7.2 Derivation process for neighbouring 8x8 luma block

Input to this process is an 8x8 luma block index luma8x8BlkIdx.

The luma8x8Blkldx specifies the 8x8 luma blocks of a macroblock in a raster scan.
Outputs of this process are

- mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

- luma8x8BIkIdxA: the index of the 8x8 luma block to the left of the 8x8 block with index luma8x8Blkldx and its
availability status,

- mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

- luma8x8BIkIdxB: the index of the 8x8 luma block above the 8x8 block with index luma8x8Blkldx and its
availability status.

mbAddrN and luma8x8BlkIdxN (with N being A or B) are derived as follows.
- The difference of luma location (xD, yD) is set according to Table 6-2.

- The luma location (XN, yN) is specified by

xN = (luma8x8BIlkIdx % 2) * 8 + xD (6-17)
yN = (luma8x8BlkIdx /2) * 8 + yD (6-18)
- The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).
- If mbAddrN is not available, luma8x8BlkIdxN is marked as not available.

- Otherwise (mbAddrN is available), the 8x8 luma block in the macroblock mbAddrN covering the luma location
(xW, yW) shall be assigned to luma8x8BlkIdxN.

6.4.7.3 Derivation process for neighbouring 4x4 luma blocks
Input to this process is a 4x4 luma block index luma4x4BIkIdx.
Outputs of this process are

- mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

- luma4x4BIlkIdxA: the index of the 4x4 luma block to the left of the 4x4 block with index luma4x4Blkldx and its
availability status,

- mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

- luma4x4BIlkIdxB: the index of the 4x4 luma block above the 4x4 block with index luma4x4Blkldx and its
availability status.

mbAddrN and luma4x4BlkIdxN (with N being A or B) are derived as follows.
- The difference of luma location (xD, yD) is set according to Table 6-2.

- The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with luma4x4BIkIdx as the
input and (X, y) as the output.

- The luma location (XN, yN) is specified by
xN =x+xD (6-19)

yN=y-+yD (6-20)

20 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
- The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).
- If mbAddrN is not available, luma4x4BIkIdxN is marked as not available.

- Otherwise (mbAddrN is available), the 4x4 luma block in the macroblock mbAddrN covering the luma location
(xW, yW) shall be assigned to luma4x4BlkIdxN.

6.4.7.4 Derivation process for neighbouring 4x4 chroma blocks
Input to this is a current 4x4 chroma block chroma4x4BlkIdx.
Outputs of this process are

- mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

- chroma4x4BIkIdxA: the index of the 4x4 chroma block to the left of the chroma 4x4 block with index
chroma4x4BIlkIdx and its availability status,

- mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

- chroma4x4BIkIdxB: the index of the 4x4 chroma block above the chroma 4x4 block index chroma4x4BlklIdx and its
availability status.

The derivation process for neighbouring 8x8 luma block is invoked with luma8x8BlkIdx = chroma4x4BlkIdx as the
input and with mbAddrA, chroma4x4BlkldxA = Iuma8x8BlkldxA, mbAddrB, and chroma4x4BlkldxB =
luma8x8BlkIdxB as the output.

6.4.7.5 Derivation process for neighbouring partitions
Inputs to this process are

- amacroblock partition index mbPartldx

- asub-macroblock partition index subMbPartldx
Outputs of this process are

- mbAddrA\mbPartldxA\subMbPartldxA: specifying the macroblock or sub-macroblock partition to the left of the
current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartIdx\subMbPartldx and its availability status,

- mbAddrB\mbPartldxB\subMbPartldxB: specifying the macroblock or sub-macroblock partition above the current
macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartldx\subMbPartldx and
its availability status,

- mbAddrC\mbPartldxC\subMbPartldxC: specifying the macroblock or sub-macroblock partition to the right-above of
the current macroblock and its availability = status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status,

- mbAddrD\mbPartldxD\subMbPartIldxD: specifying the macroblock or sub-macroblock partition to the left-above of
the current macroblock and its availability = status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status.

mbAddrN, mbPartIdxN, and subMbPartIdx (with N being A, B, C, or D) are derived as follows.

- The inverse macroblock partition scanning process as described in subclause 6.4.2.1 is invoked with mbPartldx as
the input and (X, y) as the output.

- The location of the upper-left luma sample inside a macroblock partition (xS, yS) is derived as follows.

- If mb_type is equal to P_8x8, P_8x8ref0 or B_8x8, the inverse sub-macroblock partition scanning process as
described in subclause 6.4.2.2 is invoked with subMbPartldx as the input and (xS, yS) as the output.

- Otherwise, (xS, yS)aresetto (0,0).
- The variable predPartWidth in Table 6-2 is specified as follows.

- If mb_type is equal to P_Skip or B_Skip, or mb_type is equal to B_8x8 and sub_mb_type[mbPartldx] is equal
to B_Direct_8x8, predPartWidth = 16.

DRAFT ITU-T Rec. H.264 (2002 E) 21

NOTE — When sub_mb_type[mbPartldx] is equal to B_Direct 8x8, the predicted motion vector is the predicted motion vector
for the complete macroblock independent of the value of mbPartldx.

- If mb type is equal to P_8x8, P 8x8refd, or B 8x8 (and sub mb type[mbPartldx] is not equal to
B_Direct_8x8), predPartWidth = SubMbPartWidth(sub_mb_type[mbPartldx]).

- Otherwise, predPartWidth = MbPartWidth(mb_type).
- The difference of luma location (xD, yD) is set according to Table 6-2.

- The neighbouring luma location (XN, yN) is specified by
xN=x+ xS +xD (6-21)
yN=y+yS+yD (6-22)
- The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with

(XN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

- If mbAddrN is not available, the macroblock or sub-macroblock partition mbAddrN\mbPartldxN\subMbPartIdxN is
marked as not available.

- Otherwise (mbAddrN is available), the following applies.

- The macroblock partition in the macroblock mbAddrN covering the luma location (xW, yW) shall be assigned
to mbPartldxN and the sub-macroblock partition inside the macroblock partition mbPartldxN covering the sample
(xW, yW) in the macroblock mbAddrN shall be assigned to subMbPartIdxN.

- When the partition given by mbPartldxN and subMbPartIdxN is not yet decoded, the macroblock partition
mbPartldxN and the sub-macroblock partition subMbPartldxN are marked as not available.

NOTE - The latter condition is, for example, the case when mbPartldx = 2, subMbPartldx = 3, xD = 4, yD =-1, i.e., when
neighbour C of the last 4x4 luma block of the third sub-macroblock is requested.

6.4.8 Derivation process for neighbouring locations

Input to this process is a luma or chroma location (XN, yN) expressed relative to the upper left corner of the current
macroblock

Outputs of this process are

- mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its
availability status,

- (xW, yW): the location (xN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather
than relative to the upper-left corner of the current macroblock).

Let maxWH be a variable specifying a maximum value of the location components xN, yN xW, and yW. maxWH is
derived as follows.

- If this process is invoked for neighbouring luma locations,

maxWH =16 (6-23)
- Otherwise (this process is invoked for neighbouring chroma locations),

maxWH = § (6-24)

Depending on the variable MbaffFrameFlag, the neighbouring luma locations are derived as follows

- If MbaffFrameFlag is equal to 0, the specification for neighbouring luma locations in fields and non-MBAFF frames
as described in subclause 6.4.8.1 is applied.

- Otherwise (MbaffFrameFlag is equal to 1), the specification for neighbouring luma locations in MBAFF frames as
described in subclause 6.4.8.2 is applied.

6.4.8.1 Specification for neighbouring luma locations in fields and non-MBAFF frames
The specifications in this subclause are applied when MbaffFrameFlag is equal to 0.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.5 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

22 DRAFT ITU-T Rec. H.264 (2002 E)

Table 6-3 specifies mbAddrN depending on (XN, yN).

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 6-3 — Specification of mbAddrN

xN yN mbAddrN
<0 <0 mbAddrD
<0 0. maxWH-1 | mbAddrA
0. maxWH-1 | <0 mbAddrB
0. maxWH-1 | 0. maxWH-1 | CurrMbAddr
>maxWH - 1 <0 mbAddrC
>maxWH - 1 0..maxWH -1 | not available
>maxWH - 1 not available

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxWH) % maxWH (6-25)
yW = (yN + maxWH) % maxWH (6-26)

6.4.8.2 Specification for neighbouring luma locations in MBAFF frames
The specifications in this subclause are applied when MbaffFrameFlag is equal to 1.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.6 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-4 specifies the macroblock addresses mbAddrN and yM in two ordered steps:
1. Specification of a macroblock address mbAddrX depending on (xN, yN) and the following variables:
- The variable currMbFrameFlag is derived as follows.
- If the macroblock with address CurrMbAddr is a frame macroblock, currMbFrameFlag is set equal to 1,

- Otherwise (the macroblock with address CurrMbAddr is a field macroblock), currMbFrameFlag is set equal
to 0.

- The variable mbIsTopMbFlag is derived as follows.

- If the macroblock with address CurrMbAddr is a top macroblock (CurrMbAddr % 2 is equal to 0),
mblsTopMbFlag is set equal to 1;

- Otherwise (the macroblock with address CurrMbAddr is a bottom macroblock, CurrMbAddr % 2 is equal
to 1), mbIsTopMbFlag is set equal to 0.

2. Depending on the availability of mbAddrX, the following applies.
- If mbAddrX is not available, mbAddrN is marked as not available.

- Otherwise (mbAddrX is available), mbAddrN is marked as available and Table 6-4 specifies mbAddrN and yM
depending on (xN, yN), currMbFrameFlag, mbIsTopMbFlag, and the following variable

- If the macroblock mbAddrX is a frame macroblock, mbAddrXFrameFlag is set equal to 1,
- Otherwise (the macroblock mbAddrX is a field macroblock), mbAddrXFrameFlag is set equal to 0.

Unspecified values (na) of the above flags in Table 6-4 indicate that the value of the corresponding flag is not relevant
for the current table rows.

DRAFT ITU-T Rec. H.264 (2002 E) 23

Table 6-4 - Specification of mbAddrN and yM

en
ED a0 % é
5|2 : 3
gL 3 S
gzl ox |¥ = zZ
5 5 C £ 3
S| & 5 S g S
. z E|lS 3 pt S | s
w > 3|E g = B = >
1 |mbAddrD mbAddrD+1 |yN
1 mbAddrA yN
. . b0 [mbaddra 5 MbAddrA + 1 |(yN + maxWH) >> |
< < 1 mbAddrD +1 [2*yN
o [[moAddd mbAddrD YN
0 |mbAddrD mbAddrD+1 |yN
1 mbAddrA yN
1 |mbAddrA 0 yN%2== mbAddrA yN>> 1
yN%2!=0 mbAddrA +1 |yN>>1
1 1 mbAddrA + 1 |[yN
0 |mbAddrA yN%2==0 mbAddrA (yN + maxWH) >> 1
0. 0 [yN%21=0 mbAddrA + 1 |(yN + maxWH) >> 1
<0 maxWH - | yN <(maxWH/2) |mbAddrA yN <<1
1 1 |mbAddrA yN >=(maxWH /2) |mbAddrA +1 [(yN <<1)-maxWH
0 mbAddrA yN
0 yN <(maxWH/2) |mbAddrA (yN<<1)+1
0 [mbAddra |1 |yN>=(maxwr /2) [mbAddrA +1 I(ny;:vf;l)=
0 mbAddrA +1 [yN
1 JmbAddrB mbAddrB+1 |yN
0. I To JcurrMbAddr CurrMbAddr - 1 [yN
maxWH - |<0 mbAddrB+1 |2 *yN
e W . 1 |mbAddrB QD N
0 |mbAddrB mbAddrB+1 [yN
0. 0. CurrMbAddr |yN
maxWH - |maxWH - CurrMbAddr
1 1
1 |mbAddrC mbAddrC+1 [yN
1 1o Jnot available not available na
>maxWH | mbAddrC+1 [2*yN
1 : N AddC N
0 |mbAddrC mbAddrC+1 [yN
0. not available na
_>1m axWH maxWH - not available
1
> maxWH . not available na
1 not available

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxWH) % maxWH (6-27)

yW = (yM + maxWH) % maxWH (6-28)

24 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

7 Syntax and semantics

71 Method of describing syntax in tabular form

The syntax tables describe a superset of the syntax of all allowed input bitstreams. Additional constraints on the syntax
may be specified in other clauses.

NOTE - An actual decoder should implement means for identifying entry points into the bitstream and to identify and handle non-
conforming bitstreams. The methods for identifying and handling errors and other such situations are not described here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it specifies
that a data element is read (extracted) from the bitstream and the bitstream pointer.

DRAFT ITU-T Rec. H.264 (2002 E) 25

C | Descriptor

/* A statement can be a syntax element with an associated syntax category and
descriptor or can be an expression used to specify conditions for the existence,
type, and quantity of syntax elements, as in the following two examples */

syntax_element 3 | ue(v)

conditioning statement

/* A group of statements enclosed in curly brackets is a compound statement and
is treated functionally as a single statement. */

{

statement

statement

/* A “while” structure specifies a test of whether a condition is true, and if true,
specifies evaluation of a statement (or compound statement) repeatedly until the
condition is no longer true */

while(condition)

statement

/* A “do ... while” structure specifies evaluation of a statement once, followed by
a test of whether a condition is true, and if true, specifies repeated evaluation of
the statement until the condition is no longer true */

do

statement

while(condition)

/* An “if ... else” structure specifies a test of whether a condition is true, and if
the condition is true, specifies evaluation of a primary statement, otherwise
specifies evaluation of an alternative statement. The “else” part of the structure
and the associated alternative statement is omitted if no alternative statement
evaluation is needed */

if(condition)

primary statement

else

alternative statement

/* A “for” structure specifies evaluation of an initial statement, followed by a test
of a condition, and if the condition is true, specifies repeated evaluation of a
primary statement followed by a subsequent statement until the condition is no
longer true. */

for(initial statement; condition; subsequent statement)

primary statement

7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream.

byte aligned()

- Returns TRUE if the current position in the bitstream is on a byte boundary, i.c., the next bit in the bitstream is
the first bit in a byte. Otherwise it returns FALSE.

26 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

more_data_in_byte stream()

- Returns TRUE if more data follows in the byte stream. Otherwise it returns FALSE. Used only in the byte
stream NAL unit syntax structure specified in Annex B.

more_rbsp_data()

- Returns TRUE if there is more data in an RBSP before rbsp_trailing_bits(). Otherwise it returns FALSE. The
method for enabling determination of whether there is more data in the RBSP is specified by the application (or
in Annex B for applications that use the byte stream format).

more_rbsp_trailing_data()
- Returns TRUE if there is more data in an RBSP. Otherwise it returns FALSE.
next bits(n)

- Provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream
as specified in Annex B, next bits(n) returns a value of 0 if fewer than n bits remain within the byte stream.

read bits(n)

- Reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is equal
to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.

Categories (labelled in the table as C) specify the partitioning of slice data into at most three slice data partitions. Slice
data partition A contains all syntax elements of category 2. Slice data partition B contains all syntax elements of
category 3. Slice data partition C contains all syntax elements of category 4. The meaning of other category values is not
specified. For some syntax elements, two category values, separated by a vertical bar, are used. In these cases, the
category value to be applied is further specified in the text. For syntax structures used within other syntax structures, the
categories of all syntax elements found within the included syntax structure are listed, separated by a vertical bar. A
syntax element or syntax structure with category marked as "All" is present within all syntax structures that include that
syntax element or syntax structure. For syntax structures used within other syntax structures, a numeric category value
provided in a syntax table at the location of the inclusion of a syntax structure containing a syntax element with category
marked as "All" is considered to apply to the syntax elements with category "All".

The following descriptors specify the parsing process of each syntax element. For some syntax elements, two descriptors,
separated by a vertical bar, are used. In these cases, the left descriptors apply when entropy _coding_mode_flag is equal
to 0 and the right descriptor applies when entropy_coding_mode_flag is equal to 1.

- ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is
specified in subclause 9.3.

- Db(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the
return value of the function read_bits(8).

- ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process
for this descriptor is specified in subclause 9.2.

- f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for
this descriptor is specified by the return value of the function read bits(n).

nen

- i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read bits(n) interpreted as a two’s complement integer representation with most
significant bit written first.

- me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor
is specified in subclause 9.1.

- se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

- te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is
specified in subclause 9.1.

- u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read_bits(n) interpreted as a binary representation of an unsigned integer with most
significant bit written first.

DRAFT ITU-T Rec. H.264 (2002 E) 27

- ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

7.3 Syntax in tabular form

7.3.1 NAL unit syntax

nal unit(NumBytesInNALunit) { C | Descriptor
forbidden_zero_bit All | f(1)
nal_ref idc All | u(2)
nal_unit_type All | u(d)

NumBytesInRBSP = 0
for(i=1; i <NumBytesInNALunit; i++) {
if(i+ 2 <NumBytesInNALunit && next_bits(24) == 0x000003) {

rbsp_byte[NumBytesInRBSP-++ | All | b(8)

rbsp_byte[NumBytesInRBSP-++ | All | b(8)

i+=2

emulation_prevention_three byte /* equal to 0x03 */ All | f(8)
} else

rbsp_byte[NumBytesInRBSP-++ | All | b(8)

28 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.2
7.3.2.1

Raw byte sequence payloads and RBSP trailing bits syntax

Sequence parameter set RBSP syntax

DRAFT ISO/IEC 14496-10 : 2002 (E)

seq_parameter_set_rbsp() { C | Descriptor

profile_idc 0 | u®
constraint_set(_flag 0 |u)
constraint_setl flag 0 |u)
constraint_set2 flag 0 |u(l)
reserved_zero_Sbits /* equal to 0 */ 0 [u(s)
level idc 0 | u®)
seq_parameter_set_id 0 | ue(v)
log2_max_frame_num_minus4 0 | ue(v)
pic_order_cnt_type 0 [ue(v)
if(pic_order _cnt_type == 0)

log2 max_pic_order_cnt_Isb_minus4 0 | ue(v)
else if(pic_order cnt_type == 1) {

delta_pic_order_always_zero_flag 0 |[u(l)

offset_for_non_ref pic 0 | se(v)

offset_for_top_to_bottom_field 0 | se(v)

num_ref frames in_pic_order_cnt_cycle 0 | ue(v)

for(1=0;i<num ref frames_in pic_order cnt cycle; i++)

offset_for_ref frame[i] 0 | se(v)

¥
num_ref frames 0 | ue(v)
gaps_in_frame num_value_allowed_flag 0 |u)
pic_width_in_mbs_minus1 0 | ue(v)
pic_height_in_map_units_minus1 0 | ue(v)
frame_mbs_only_flag 0 | ul)
if(!frame_mbs_only flag)

mb_adaptive frame_field flag 0 |u)
direct_8x8 inference flag 0 |u)
frame_cropping_flag 0 |u(l)
if(frame_cropping_flag) {

frame_crop_left_offset 0 | ue(v)

frame_crop_right_offset 0 | ue(v)

frame_crop_top_offset 0 | ue(v)

frame_crop_bottom_offset 0 | ue(v)
¥
vui_parameters_present_flag 0 |u)
if(vui_parameters_present_flag)

vui_parameters() 0
rbsp_trailing bits() 0

H

DRAFT ITU-T Rec. H.264 (2002 E)

29

7.3.2.2

30

Picture parameter set RBSP syntax

pic_parameter_set rbsp() { C | Descriptor
pic_parameter_set_id 1 | ue(v)
seq_parameter_set_id 1 | ue(v)
entropy_coding_mode_flag 1| u(l)
pic_order present_flag 1 | u(l)
num_slice_groups_minus1 1 | ue(v)
if(num_slice groups minusl >0) {
slice_group_map_type 1 | ue(v)
if(slice_group map type == 0)
for(iGroup = 0; iGroup <= num_slice_groups_minusl; iGroup++)
run_length_minus1|[iGroup | 1 | ue(v)
else if(slice_group map type == 2)
for(iGroup = 0; iGroup < num_slice_groups_minusl; iGroup++) {
top_left[iGroup | 1 | ue(v)
bottom_right[iGroup | 1 | ue(v)
H
else if(slice_group map type == 3 ||
slice_group _map type == 4 ||
slice_group map type == 5) {
slice_group_change_direction_flag 1| u(l)
slice_group_change _rate_minusl 1 | ue(v)
} else if(slice_group map type == 6) {
pic_size_in_map_units_minusl 1 | ue(v)
for(1=0;i<=pic_size in_map units minusl; i++)
slice_group_id[i] 1| uv)
H
¥
num_ref idx_10_active_minusl 1 | ue(v)
num_ref idx_11_active_minusl 1 | ue(v)
weighted_pred_flag 1| u(l)
weighted_bipred_idc 1] u?2)
pic_init_qp_minus26 /* relative to 26 */ 1 | se(v)
pic_init_qs_minus26 /* relative to 26 */ 1 | se(v)
chroma_qp_index_offset 1 | se(v)
deblocking_filter_control_present_flag 1| u(l)
constrained_intra_pred_flag 1| u(l)
redundant_pic_cnt_present_flag 1| u(l)
rbsp_trailing_bits() 1

DRAFT ITU-T Rec. H.264 (2002 E)

7.3.2.3 Supplemental enhancement information RBSP syntax

7.3.2.3.1 Supplemental enhancement information message syntax

7.3.2.4

7.3.2.5

DRAFT ISO/IEC 14496-10 : 2002 (E)

sei_rbsp() {

C | Descriptor

do

sei_message() 5
while(more_rbsp_data())
rbsp_trailing_bits() 5

sei_message() {

C | Descriptor

payloadType =0

while(next_bits(8) == OxFF) {

ff byte /* equal to OXxFF */

5 |8

payloadType += 255

}

last_payload_type_byte

5 | u®)

payloadType += last_payload_type byte

payloadSize =0

while(next_bits(8) == OxFF) {

ff byte /* equal to OXFF */

5 | £8)

payloadSize += 255

}

last_payload_size byte

5 u(8)

payloadSize += last_payload_size byte

sei_payload(payloadType, payloadSize)

Access unit delimiter RBSP syntax

access_unit_delimiter_rbsp() {

Descriptor

primary_pic_type

A

u(3)

rbsp_trailing_bits()

End of sequence RBSP syntax

end of seq rbsp() {

C | Descriptor

}

DRAFT ITU-T Rec. H.264 (2002 E)

31

7.3.2.6 End of stream RBSP syntax

end of stream rbsp() {

Descriptor

}

7.3.2.7 Filler data RBSP syntax

filler_data rbsp(NumBytesInRBSP) {

Descriptor

while(next_bits(8) == OxFF)

ff byte /* equal to OXxFF */

f(8)

rbsp_trailing_bits()

7.3.2.8 Slice layer without partitioning RBSP syntax

slice_layer_without_partitioning_rbsp() {

Descriptor

slice_header()

slice_data() /* all categories of slice_data() syntax */

21314

tbsp_slice_trailing bits()

7.3.2.9 Slice data partition RBSP syntax

7.3.2.9.1 Slice data partition A RBSP syntax

slice_data_partition_a_layer rbsp() {

Descriptor

slice_header()

slice_id

ue(v)

slice_data() /* only category 2 parts of slice_data() syntax */

rbsp_slice_trailing_bits()

IR IR SN

7.3.2.9.2 Slice data partition B RBSP syntax

slice_data_partition_b layer rbsp() {

Descriptor

slice_id

ue(v)

if(redundant_pic_cnt_present flag)

redundant_pic_cnt

ue(v)

slice_data() /* only category 3 parts of slice_data() syntax */

rbsp_slice_trailing_bits()

32 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

7.3.2.9.3 Slice data partition C RBSP syntax
slice_data partition_c_layer rbsp() { C | Descriptor
slice_id 4 | ue(v)
if(redundant pic_cnt _present flag)
redundant_pic_cnt 4 | ue(v)
slice_data() /* only category 4 parts of slice_data() syntax */ 4
rbsp_slice_trailing bits() 4
}
7.3.2.10 RBSP slice trailing bits syntax
rbsp_slice trailing bits() { C | Descriptor
rbsp_trailing_bits() All
if(entropy_coding_mode flag)
while(more_rbsp_trailing_data())
cabac_zero_word /* equal to 0x0000 */ All | f(16)
}
7.3.2.11 RBSP trailing bits syntax
rbsp_trailing_bits() { C | Descriptor
rbsp_stop_one_bit /* equal to 1 */ All | f(1)
while(!byte aligned())
rbsp_alignment_zero_bit /* equal to 0 */ All | f(1)
}

DRAFT ITU-T Rec. H.264 (2002 E)

33

7.3.3

34

Slice header syntax

slice_header() { C | Descriptor
first_mb_in_slice 2 | ue(v)
slice_type 2 | ue(v)
pic_parameter_set_id 2 | ue(v)
frame_num 2 | uv)
if(!frame_mbs only flag) {
field_pic_flag 2 | ul)
if(field_pic_flag)
bottom_field_flag 2 | u(l)
}
if(nal unit type == 5)
idr_pic_id 2 | ue(v)
if(pic_order_cnt type == 0) {
pic_order_cnt_Isb 2 | uv)
if(pic_order present flag && !field pic flag)
delta_pic_order_cnt_bottom 2 | se(v)
¥
if(pic_order cnt_type == 1 && !delta_pic_order always zero flag) {
delta_pic_order_cnt[0] 2 | se(v)
if(pic_order present flag && !field pic flag)
delta_pic_order_cnt[1 | 2 se(v)
¥
if(redundant_pic_cnt_present flag)
redundant_pic_cnt 2 | ue(v)
if(slice_type == B)
direct_spatial mv_pred_flag 2 | ul)
if(slice_type==P | |slice_type == SP ||slice type==B) {
num_ref_idx_active_override_flag 2 | u(l)
if(num_ref idx_active override flag) {
num_ref_idx _10_active_minusl 2 | ue(v)
if(slice_type == B)
num_ref_idx_I1_active_minusl 2 | ue(v)
¥
}
ref pic_list reordering() 2
if((weighted_pred flag && (slice type==P || slice type==SP)) ||
(weighted bipred idc == 1 && slice type == B))
pred_weight table() 2
if(nal_ref idc !=0)
dec_ref pic_marking() 2
if(entropy_coding_mode flag && slice type != I && slice type != SI)
cabac_init_idc 2 | ue(v)
slice_qp_delta 2 | se(v)
if(slice_type == SP || slice_type == SI) {
if(slice_type == SP)
sp_for_switch_flag 2 | ul)
slice_qs_delta 2 | se(v)

DRAFT ITU-T Rec. H.264 (2002 E)

7.3.3.1

DRAFT ISO/IEC 14496-10 : 2002 (E)

}
if(deblocking filter control present flag) {
disable_deblocking_filter_idc 2 | ue(v)
if(disable_deblocking_filter idc != 1) {
slice_alpha_c0_offset_div2 2 | se(v)
slice_beta_offset_div2 se(v)
}
)
if(num_slice_groups_minusl >0 &&
slice_group map type >=3 && slice group map type <=5)
slice_group_change_cycle 2 | u®v)
}

Reference picture list reordering syntax

ref pic_list reordering() { C | Descriptor
if(slice_type !'= 1 && slice type != SI) {
ref_pic_list_reordering_flag 10 2 | u(l)
if(ref pic_list reordering flag 10)
do {
reordering_of pic_nums_idc 2 | ue(v)
if(reordering_of pic nums idc == 0 ||
reordering_of pic nums idc == 1)
abs_diff pic_num_minusl 2 | ue(v)
else if(reordering_of pic nums idc == 2)
long_term_pic_num 2 | ue(v)
} while(reordering of pic nums_idc != 3)
}
if(slice_type == B) {
ref_pic_list_reordering_flag 11 2 | u(l)
if(ref pic_list reordering flag 11)
do {
reordering_of pic_nums_idc 2 | ue(v)
if(reordering_of pic nums idc == 0 ||
reordering of pic nums ide == 1)
abs_diff pic_num_minusl 2 | ue(v)
else if(reordering of pic nums_idc == 2)
long_term_pic_num 2 | ue(v)
} while(reordering_of pic_nums_idc != 3)
}
}

DRAFT ITU-T Rec. H.264 (2002 E)

35

7.3.3.2

36

Prediction weight table syntax

pred_weight table() { C | Descriptor
luma_log2_ weight _denom 2 | ue(v)
chroma_log2 weight_denom 2 | ue(v)
for(1=0; i <=num_ref idx 10 active minusl; i++) {
luma_weight 10 flag 2 | u(l)
if(luma_weight 10 flag) {
luma_weight 10[i] 2 | se(v)
luma_offset 10]1i] 2 | se(v)
}
chroma_weight 10 flag 2 | u(l)
if(chroma weight 10 flag)
for(j=0;j<2;j++) {
chroma_weight 10[i][]] 2 | se(v)
chroma_offset 10[i][j] 2 | se(v)
}
¥
if(slice_type == B)
for(i=0;1<=num_ref idx_11_active minusl; i++) {
luma_weight_11_flag 2 | u(l)
if(luma_weight 11 _flag) {
luma_weight 11] i] 2 | se(v)
luma_offset _11]1] 2 | se(v)
H
chroma_weight_I1_flag 2 | u(l)
if(chroma_weight 11 flag)
for(j=0;j<2;j++) {
chroma_weight 11[1][]] 2 | se(v)
chroma_offset 11[i][j] 2 | se(v)

DRAFT ITU-T Rec. H.264 (2002 E)

7.3.3.3

DRAFT ISO/IEC 14496-10 : 2002 (E)

Decoded reference picture marking syntax
dec_ref pic_marking() { C | Descriptor
if(nal_unit type == 5) {
no_output_of prior_pics_flag 215 | u(l)
long_term_reference_flag 215 | u(l)
} else {
adaptive_ref pic_marking_mode_flag 215 | u(l)
if(adaptive_ref pic_marking mode flag)
do {
memory_management_control_operation 215 | ue(v)
if(memory_management control operation == 1 ||
memory management control operation == 3)
difference_of pic_nums_minusl 215 | ue(v)
if(memory_management_control_operation == 2)
long_term_pic_num 2|5 | ue(v)
if(memory_management control operation == 3 ||
memory management control operation == 6)
long_term_frame_idx 215 | ue(v)
if(memory management control operation == 4)
max_long_term_frame idx_plusl 215 | ue(v)
} while(memory_management control operation != 0)
)
}

DRAFT ITU-T Rec. H.264 (2002 E)

37

7.3.4

38

Slice data syntax

slice_data() {

Descriptor

if(entropy_coding_mode flag)

while(!byte aligned())

cabac_alignment_one_bit

f(1)

CurrMbAddr = first mb_in_slice * (1 + MbaffFrameFlag)

moreDataFlag = 1

prevMbSkipped = 0

do {

if(slice_type != 1 && slice type != SI)

if(lentropy_coding_mode flag) {

mb_skip_run

ue(v)

prevMbSkipped = (mb_skip run>0)

for(i=0; i<mb_skip run; i++)

CurrMbAddr = NextMbAddress(CurrMbAddr)

moreDataFlag = more rbsp_data()

} else {

mb_skip_flag

ae(v)

moreDataFlag = Imb_skip flag

}

if(moreDataFlag) {

if(MbaffFrameFlag && (CurrMbAddr %2 == 0 ||
(CurrMbAddr % 2 == 1 && prevMbSkipped)))

mb_field_decoding_flag

u(l) | ae(v)

macroblock layer()

2134

}

if(lentropy coding_mode flag)

moreDataFlag = more _rbsp_data()

else {

if(slice_type != 1 && slice type != SI)

prevMbSkipped = mb_skip flag

if(MbaffFrameFlag && CurrMbAddr %2 == 0)

moreDataFlag = 1

else {

end_of slice_flag

ae(v)

moreDataFlag = lend of slice flag

}

CurrMbAddr = NextMbAddress(CurrMbAddr)

} while(moreDataFlag)

DRAFT ITU-T Rec. H.264 (2002 E)

7.3.5

DRAFT ISO/IEC 14496-10

Macroblock layer syntax

macroblock_layer() {

Descriptor

mb_type

ue(v) | ae(v)

if(mb_type==1 PCM) {

while(!byte_aligned())

pcm_alignment_zero_bit

f(1)

for(1=0; 1< 256 * ChromaFormatFactor; i++)

pem_byte[]

u(®)

} else {

if(MbPartPredMode(mb_type, 0) != Intra_4x4 &&
MbPartPredMode(mb_type, 0) != Intra 16x16 &&
NumMbPart(mb type) == 4)

sub_mb_pred(mb_type)

else

mb_pred(mb_type)

if(MbPartPredMode(mb_type, 0) != Intra 16x16)

coded_block_pattern

me(v) | ae(v)

if(CodedBlockPatternLuma > 0 | | CodedBlockPatternChroma >0 | |
MbPartPredMode(mb type, 0) == Intra 16x16) {

mb_qp_delta

se(v) | ae(v)

residual()

314

DRAFT ITU-T Rec. H.264 (2002 E)

: 2002 (E)

39

7.3.5.1

40

Macroblock prediction syntax

mb_pred(mb_type) {

Descriptor

if(MbPartPredMode(mb_type, 0) == Intra_4x4 ||
MbPartPredMode(mb type, 0) == Intra 16x16) {

if(MbPartPredMode(mb_type, 0) == Intra_4x4)

for(luma4x4BlkIdx=0; luma4x4Blkldx<16; luma4x4Blkldx++) {

prev_intradx4 pred_mode_flag[luma4x4BIkIdx |

u(l) [ae(v)

if(!prev_intradx4 pred mode flag[luma4x4BlkIdx |)

rem_intradx4 pred_mode[luma4x4BlkIdx]

u(3) | ae(v)

}

intra_chroma_pred_mode

ue(v) | ae(v)

} else if(MbPartPredMode(mb_type, 0) != Direct) {

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref idx 10 _active minusl >0 ||
mb_field decoding flag) &&
MbPartPredMode(mb_type, mbPartldx) != Pred L1)

ref_idx_10[mbPartldx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref idx 11 active minusl > 0 ||
mb_field decoding flag) &&
MbPartPredMode(mb_type, mbPartldx) != Pred LO)

ref_idx_11[mbPartldx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode (mb_type, mbPartldx) != Pred L1)

for(compldx = 0; compldx < 2; compldx++)

mvd_10[mbPartldx][0][compldx]

se(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode(mb_type, mbPartldx) != Pred LO)

for(compldx = 0; compldx < 2; compldx++)

mvd_I1[mbPartldx |[0][compldx]

se(v) | ae(v)

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

7.3.5.2 Sub-macroblock prediction syntax

sub mb pred(mb type) { C | Descriptor
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
sub_mb_type[mbPartldx] 2 | ue(v)|ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if((num_ref idx_10_active minusl > 0 || mb_field decoding_ flag) &&
mb_type != P_8x8refl &&
sub_mb_type[mbPartldx | != B_Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred L1)
ref idx_10[mbPartldx] 2 | te(v)]ae(v)
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if((num_ref idx 11_active minusl > 0 || mb_field decoding flag) &&
sub_mb_type[mbPartldx] != B_Direct 8x8 &&
SubMbPredMode(sub_ mb_type[mbPartldx]) != Pred L0)
ref idx 11[mbPartldx] 2 | te(v)]ae(v)
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if(sub_mb_type[mbPartldx] = B_Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred L1)
for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub_mb_type[mbPartldx]);
subMbPartldx++)
for(compldx = 0; compldx < 2; compldx++)
mvd_10] mbPartldx][subMbPartldx][compldx] 2 | se(v)]|ae(v)
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if(sub_mb_type[mbPartldx | = B_Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred LO)
for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub_mb_type[mbPartldx]);
subMbPartldx++)
for(compldx = 0; compldx < 2; compldx++)
mvd_11] mbPartldx][subMbPartldx][compldx] 2 | se(v)]ae(v)

DRAFT ITU-T Rec. H.264 (2002 E) 41

7.3.5.3

42

Residual data syntax

residual() { C Descriptor
if(lentropy coding mode_flag)
residual_block = residual_block cavlc
else
residual_block = residual_block cabac
if(MbPartPredMode(mb_type, 0) == Intra_16x16)
residual_block(Intral6x16DCLevel, 16) 3
for(18x8 = 0; i8x8 < 4; i8x8++) /* each luma 8x8 block */
for(14x4 = 0; 14x4 < 4; i4x4++) /* each 4x4 sub-block of block */
if(CodedBlockPatternLuma & (1 <<i8x8)) {
if(MbPartPredMode(mb_type, 0) == Intra_16x16)
residual_block(Intral6x16ACLevel[i8x8 * 4 +i4x4], 15) 3
else
residual_block(LumaLevel[i8x8 * 4 +i4x4], 16) 3|4
} else {
if(MbPartPredMode(mb_type, 0) == Intra_16x16)
for(i=0;i<15;i++)
Intral6x16ACLevel[i8x8 * 4 +i4x4 J[1]=0
else
for(i=0;i<16;it+)
LumaLevel[i8x8 *4 +i4x4][1]=0
}
for(iCbCr = 0; iCbCr < 2; iCbCr++)
if(CodedBlockPatternChroma & 3) /* chroma DC residual present */
residual_block(ChromaDCLevel[iCbCr], 4) 314
else
for(1=0;1<4;i++)
ChromaDCLevel[iCbCr J[1]=0
for(iCbCr = 0; iCbCr < 2; iCbCr++)
for(i14x4 = 0; i4x4 < 4; 14x4++)
if(CodedBlockPatternChroma & 2)
/* chroma AC residual present */
residual_block(ChromaACLevel[iCbCr][i4x4], 15) 3|4

else

for(1=0;i<15;i++)

ChromaACLevel[iCbCr][i4x4][1]=0

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

7.3.5.3.1 Residual block CAVLC syntax

residual_block cavlc(coeffLevel, maxNumCoeff') { C | Descriptor
for(1= 0; i < maxNumCoeff; i++)
coeffLevel[i]=0
coeff_token 314 | ce(v)
if(TotalCoeff(coeff token)>0) {
if(TotalCoeff(coeff token) > 10 && TrailingOnes(coeff token) <3)
suffixLength = 1
else
suffixLength =0
for(1=0; i< TotalCoeff(coeff token);it+)
if(1 < TrailingOnes(coeff token)) {

trailing_ones_sign_flag 314 | u(l)
level[i]=1-2 * trailing ones_sign flag

}else {
level_prefix 314 | ce(v)

levelCode = (level prefix << suffixLength)

if(suffixLength >0 || level prefix >=14) {
level_suffix 314 | uv)
levelCode += level suffix

i

if(level prefix == 14 && suffixLength == 0)
levelCode += 15

if(1 == TrailingOnes(coeff token) &&
TrailingOnes(coeff token) <3)
levelCode += 2

if(levelCode % 2 == 0)

level[1] = (levelCode +2)>>1
else

level[i]=(-levelCode —1)>>1
if(suffixLength == 0)

suffixLength = 1

if(Abs(level[i]) > (3 <<(suffixLength—1)) &&
suffixLength <6)
suffixLength++

}
if(TotalCoeff(coeff token) < maxNumCoeff) {

total_zeros 314 | ce(v)

zerosLeft = total zeros

} else

zerosLeft =0
for(i=0; i< TotalCoeff(coeff token)—1;i++) {
if(zerosLeft > 0) {

run_before 314 | ce(v)
run[i] = run_before

} else
run[i]=0

zerosLeft = zerosLeft —run[i]

DRAFT ITU-T Rec. H.264 (2002 E) 43

run[TotalCoeff(coeff token)—1] = zerosLeft

coeffNum = -1

for(1= TotalCoeff(coeff token)—1;i>=0;1i--) {

coeffNum +=run[i]+ 1

coeffLevel[coeffNum] =level[i]

7.3.5.3.2 Residual block CABAC syntax

residual_block cabac(coeffLevel, maxNumCoeff') {

Descriptor

coded_block_flag

34

ae(v)

if(coded block flag) {

numCoeff = maxNumCoeff

i=0

do {

significant_coeff flag|i |

314

ae(v)

if(significant coeff flag[i]) {

last_significant_coeff flag| i |

34

ae(v)

if(last_significant_coeff flag[i]) {

numCoeff=1+1

for(j = numCoeff; j < maxNumCoeff; j++)

coeffLevel[j]=0

}

i+t

} while(i < numCoeff-1)

coeff_abs_level minusl[numCoeff-1 |

314

ae(v)

coeff_sign_flag] numCoeff-1]

34

ae(v)

coeffLevel[numCoeff-1] =
(coeff_abs_level minusl[numCoeff—1]+1)*
(1—2* coeff sign flag] numCoeff—11])

for(1 =numCoeff-2;1>=0;i--) {

if(significant coeff flag[i]) {

coeff_abs_level _minus1[i]

314

ae(v)

coeff _sign_flag[i]

314

ae(v)

coeffLevel[i] = (coeff abs level minusl[i]+1)*
(1—2 *coeff sign flag[i])

} else

coefflLevel[1]=0

}

} else

for(1= 0; i < maxNumCoeff; i++)

coeffLevel[1]=0

44 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

7.4 Semantics

7.4.1 NAL unit semantics

NOTE - The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data and
provide header information in a manner appropriate for conveyance on a variety of communication channels or storage media. All
data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use
in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and byte stream is
identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte stream format.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit.
Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such
demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be specified
outside of this Recommendation | International Standard.

forbidden_zero_bit shall be equal to 0.

nal_ref_idc not equal to 0 specifies that the content of the NAL unit contains a sequence parameter set or a picture
parameter set or a slice of a reference picture or a slice data partition of a reference picture.

nal_ref idc equal to O for a NAL unit containing a slice or slice data partition indicates that the slice or slice data
partition is part of a non-reference picture.

nal_ref idc shall not be equal to 0 for sequence parameter set or picture parameter set NAL units. When nal_ref idc is
equal to 0 for one slice or slice data partition NAL unit of a particular picture, it shall be equal to 0 for all slice and slice
data partition NAL units of the picture.

nal_ref idc shall be not be equal to 0 for IDR NAL units, i.e., NAL units with nal unit_type equal to 5.
nal_ref idc shall be equal to O for all NAL units having nal_unit_type equal to 6, 9, 10, 11, or 12.

nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1. VCL NAL
units are specified as those NAL units having nal_unit_type equal to 1 to 5, inclusive. All remaining NAL units are
called non-VCL NAL units.

The column marked "C" in Table 7-1 lists the categories of the syntax elements that may be present in the NAL unit. In
addition, syntax elements with syntax category "All" may be present, as determined by the syntax and semantics of the
RBSP data structure. The presence or absence of any syntax elements of a particular listed category is determined from
the syntax and semantics of the associated RBSP data structure. nal unit_type shall not be equal to 3 or 4 unless at least
one syntax element is present in the RBSP data structure having a syntax element category value equal to the value of
nal unit_type and not categorized as "All".

DRAFT ITU-T Rec. H.264 (2002 E) 45

Table 7-1 — NAL unit type codes

nal_unit_type Content of NAL unit and RBSP syntax structure C

0 Unspecified

1 Coded slice of a non-IDR picture 2,3,4
slice layer without partitioning_rbsp()

2 Coded slice data partition A 2
slice_data partition a layer rbsp()

3 Coded slice data partition B 3
slice_data partition b layer rbsp()

4 Coded slice data partition C 4
slice_data partition c layer rbsp()

5 Coded slice of an IDR picture 2,3
slice layer without partitioning rbsp()

6 Supplemental enhancement information (SEI) 5
sei_rbsp()

7 Sequence parameter set 0

seq parameter_set _rbsp()

8 Picture parameter set 1
pic_parameter_set rbsp()

9 Access unit delimiter 6
access_unit_delimiter rbsp()

10 End of sequence 7
end of seq rbsp()
11 End of stream 8
end_of stream_rbsp()
12 Filler data ?
filler data rbsp()
13.23 Reserved
24.31 Unspecified

In the text, coded slice NAL unit collectively refers to a coded slice of a non-IDR picture NAL unit or to a coded slice of
an IDR picture NAL unit.

No decoding process for nal unit type equal to 0 or in the range of 24 to 31, inclusive, is specified in this
Recommendation | International Standard.
NOTE — NAL unit types 0 and 24..31 may be used as determined by the application.

Decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of
nal unit_type.

When the value of nal unit_type is equal to 5 for a NAL unit containing a slice of a coded picture, the value of
nal_unit_type shall be 5 in all other VCL NAL units of the same coded picture. Such a picture is referred to as an IDR
picture.

NOTE - Slice data partitioning cannot be used for IDR pictures.

rbsp_byte[i] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.
The RBSP contains an SODB in the following form:

- Ifthe SODB is empty (i.e., zero bits in length), the RBSP is also empty.

- Otherwise, the RBSP contains the SODB in the following form:

1) The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of
the RBSP shall contain the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

46 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

2) rbsp_trailing bits() are present after the SODB as follows:

i) The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the SODB,
(if any)

ii) The next bit consists of a single rbsp_stop_one_bit equal to 1, and

iii) When the rbsp stop one bit is not the last bit of a byte-aligned byte, one or more
rbsp_alignment zero_bit is present to result in byte alignment.

3) One or more cabac_zero_word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after
the rbsp_trailing_bits() at the end of the RBSP.

"

Syntax structures having these RBSP properties are denoted in the syntax tables using an " rbsp" suffix. These
structures shall be carried within NAL units as the content of the rbsp_byte[i] data bytes. The association of the RBSP
syntax structures to the NAL units shall be as specified in Table 7-1.

NOTE - When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits
of the bytes of the RBSP and discarding the rbsp_stop_one_bit, which is the last (least significant, right-most) bit equal to 1, and
discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for the
decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three byte is a byte equal to 0x03. When an emulation_prevention_three_byte is present in the
NAL unit, it shall be discarded.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
— 0x000000

- 0x000001

- 0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not
occur at any byte-aligned position:

— 0x00000300
- 0x00000301
— 0x00000302
- 0x00000303

7.4.1.1 Encapsulation of an SODB within an RBSP (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation prevention_three byte for
encapsulation of an RBSP within a NAL unit is specified for the following purposes:

— to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented
within a NAL unit,

— to enable identification of the end of the SODB within the NAL unit by searching the RBSP for the
rbsp_stop _one_bit starting at the end of the RBSP, and

— to enable a NAL unit to have a size larger than that of the SODB under some circumstances (using one or more
cabac_zero_word).

The encoder can produce a NAL unit from an RBSP by the following procedure:
The RBSP data is searched for byte-aligned bits of the following binary patterns:

'00000000 00000000 000000xx' (where xx represents any 2 bit pattern: 00, 01, 10, or 11),
and a byte equal to 0x03 is inserted to replace these bit patterns with the patterns

'00000000 00000000 00000011 000000xx',

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends in a
cabac_zero_word), a final byte equal to 0x03 is appended to the end of the data.

The resulting sequence of bytes is then prefixed with the first byte of the NAL unit containing the indication of the type
of RBSP data structure it contains. This results in the construction of the entire NAL unit.

This process can allow any SODB to be represented in a NAL unit while ensuring that

DRAFT ITU-T Rec. H.264 (2002 E) 47

— no byte-aligned start code prefix is emulated within the NAL unit, and

— no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within
the NAL unit.

7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences

This subclause specifies constraints on the order of NAL units in the bitstream. Any order of NAL units in the bitstream
obeying these constraints is referred to in the text as the decoding order of NAL units. Within a NAL unit, the syntax in
subclauses 7.3, D.1, and E.1 specifies the decoding order of syntax elements. Decoders conforming to this
Recommendation | International Standard shall be capable of receiving NAL units and their syntax elements in decoding
order.

7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation

NOTE - The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information
from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed
"out-of-band" using a reliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units or coded slice
data partition A NAL units of one or more coded pictures.

When a picture parameter set RBSP (with a particular value of pic_parameter_set_id) is first referred to by a coded slice
NAL unit or coded slice data partition A NAL unit (using that value of pic_parameter set_id), it is activated. This picture
parameter set RBSP is called the active picture parameter set RBSP until another picture parameter set RBSP is
activated. A picture parameter set RBSP shall be available to the decoding process prior to its activation.

Any picture parameter set NAL unit containing the value of pic_parameter set id for an active picture parameter set
RBSP shall have the same content as that of the active picture parameter set RBSP unless it follows the last VCL NAL
unit of a coded picture and precedes the first VCL NAL unit of another coded picture.

A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set RBSPs
or one or more SEI NAL units containing a buffering period SEI message.

When a sequence parameter set RBSP (with a particular value of seq_parameter_set id) is first referred to by activation
of a picture parameter set RBSP (using that value of seq parameter set id) or is first referred to by an SEI NAL unit
containing a buffering period SEI message (using that value of seq parameter set id), it is activated. This sequence
parameter set RBSP is called the active sequence parameter set RBSP until another sequence parameter set RBSP is
activated. A sequence parameter set RBSP shall be available to the decoding process prior to its activation. An activated
sequence parameter set RBSP shall remain active for the entire coded video sequence.

Any sequence parameter set NAL unit containing the value of seq_parameter set_id for an active sequence parameter set
RBSP shall have the same content as that of the active sequence parameter set RBSP unless it follows the last access unit
of a coded video sequence and precedes the first VCL NAL unit and the first SEI NAL unit containing a buffering period
SEI message (when present) of another coded video sequence.
NOTE - If picture parameter set RBSP or sequence parameter set RBSP are conveyed within the bitstream, these constraints
impose an order constraint on the NAL units that contain the picture parameter set RBSP or sequence parameter set RBSP,
respectively. Otherwise (picture parameter set RBSP or sequence parameter set RBSP are conveyed by other means not specified
in this Recommendation | International Standard), they shall be available to the decoding process in a timely fashion such that
these constraints are obeyed.

During operation of the decoding process (see clause 8), the values of parameters of the active picture parameter set and
the active sequence parameter set shall be considered in effect. For interpretation of SEI messages, the values of the
parameters of the picture parameter set and sequence parameter set that are active for the operation of the decoding
process for the VCL NAL units of the primary coded picture in the same access unit shall be considered in effect unless
otherwise specified in the SEI message semantics.

7.4.1.2.2 Order of access units and association to coded video sequences
A bitstream conforming to this Recommendation | International Standard consists of one or more coded video sequences.

A coded video sequence consists of one or more access units. The order of NAL units and coded pictures and their
association to access units is described in subclause 7.4.1.2.3.

The first access unit of each coded video sequence is an IDR access unit. All subsequent access units in the coded video
sequence are non-IDR access units.

Consecutive access units containing non-reference pictures shall be ordered in ascending order of picture order count.

When present, an access unit following an access unit that contains an end of sequence NAL unit shall be an IDR access
unit.

48 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

When an SEI NAL unit contains data that pertain to more than one access unit (for example, when the SEI NAL unit has
a coded video sequence as its scope), it shall be contained in the first access unit to which it applies.

When an end of stream NAL unit is present in an access unit, this access unit shall be the last NAL unit in the bitstream.

7.4.1.2.3 Order of NAL units and coded pictures and association to access units

An access unit consists of one primary coded picture, zero or more corresponding redundant coded pictures, and zero or
more non-VCL NAL units. The association of VCL NAL units to primary or redundant coded pictures is described in
subclause 7.4.1.2.5.

The first of any of the following NAL units after the last VCL NAL unit of a primary coded picture specifies the start of
a new access unit.

- access unit delimiter NAL unit (when present)

- sequence parameter set NAL unit (when present)

- picture parameter set NAL unit (when present)

- SEI NAL unit (when present)

- NAL units with nal unit_type in the range of 13 to 18, inclusive
- first VCL NAL unit of a primary coded picture (always present)

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in subclause
7.4.1.2.4.

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access
unit.

- When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access
unit delimiter NAL unit in any access unit.

- When any SEI NAL units are present, they shall precede the primary coded picture.

- When an SEI NAL unit containing a buffering period SEI message is present, the buffering period SEI message
shall be the first SEI message payload of the first SEI NAL unit in the access unit

- The primary coded picture shall precede the corresponding redundant coded pictures.

- When redundant coded pictures are present, they shall be ordered in ascending order of the value of
redundant_pic_cnt.

- When an end of sequence NAL unit is present, it shall follow the primary coded picture and all redundant coded
pictures (if any).

- When an end of stream NAL unit is present, it shall be the last NAL unit.
- sequence parameter set NAL units or picture parameter set NAL units may be present in the access unit.

- NAL units having nal_unit_type equal to 0, 12, or in the range of 19 to 31, inclusive, shall not precede the first VCL
NAL unit of the primary coded picture.

NOTE — When a NAL unit having nal_unit_type equal to 7 or 8 is present in an access unit, it may not be referred to in the coded
pictures of the access unit in which it is present, and may be referred to in coded pictures of subsequent access units.

The structure of access units not containing any NAL units with nal_unit_type equal to 0, 7, 8, or in the range of 12
to 31, inclusive, is shown in Figure 7-1.

DRAFT ITU-T Rec. H.264 (2002 E) 49

start

y

access unit delimiter

-

A

primary coded picture

A4

redundant coded picture

-
-

Y
end of sequence

-
-

Y
end of stream

\

end

Figure 7-1 — The structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8, or in
the range of 12 to 31, inclusive

7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture

Any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded picture of the current access
unit shall be different from any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded
picture of the previous access unit in one or more of the following ways.

- frame_num differs in value.

- field pic_flag differs in value.

- bottom_field flag is present in both and differs in value.

- nal_ref idc differs in value with one of the nal_ref idc values being equal to 0.

- frame num is the same for both and pic_order cnt type is equal to 0 for both and either pic_order cnt_lIsb differs in
value, or delta_pic_order_cnt_bottom differs in value.

- frame num is the same for both and pic_order cnt type is equal to 1 for both and either delta pic_order cnt[O]
differs in value, or delta_pic_order_cnt[1] differs in value.

- nal unit type is equal to 5 for both and idr_pic_id differs in value.

NOTE — Some of the VCL NAL units in redundant coded pictures or some non-VCL NAL units (e.g. an access unit delimiter
NAL unit) may also be used for the detection of the boundary between access units, and may therefore aid in the detection of the
start of a new primary coded picture.

7.4.1.2.5 Order of VCL NAL units and association to coded pictures
Each VCL NAL unit is part of a coded picture.
The following constraints shall be obeyed by the order of the VCL NAL units within a coded IDR picture.

50 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

- If arbitrary slice order is allowed as specified in Annex A, coded slice of an IDR picture NAL units may have any
order relative to each other.

- Otherwise (arbitrary slice order is not allowed), the order of coded slice of an IDR picture NAL units shall be in the
order of increasing macroblock address for the first macroblock of each coded slice of an IDR picture NAL unit.

The following constraints shall be obeyed by the order of the VCL NAL units within a coded non-IDR picture.

- If arbitrary slice order is allowed as specified in Annex A, coded slice of a non-IDR picture NAL units or coded
slice data partition A NAL units may have any order relative to each other. A coded slice data partition A NAL unit
with a particular value of slice id shall precede any present coded slice data partition B NAL unit with the same
value of slice_id. A coded slice data partition A NAL unit with a particular value of slice_id shall precede any
present coded slice data partition C NAL unit with the same value of slice id. If a coded slice data partition B NAL
unit with a particular value of slice_id is present, it shall precede any present coded slice data partition C NAL unit
with the same value of slice_id.

- Otherwise (arbitrary slice order is not allowed), the order of coded slice of a non-IDR picture NAL units or coded
slice data partition A NAL units shall be in the order of increasing macroblock address for the first macroblock of
each coded slice of a non-IDR picture NAL unit or coded slice data partition A NAL unit. A coded slice data
partition A NAL unit with a particular value of slice id shall immediately precede any present coded slice data
partition B NAL unit with the same value of slice id. A coded slice data partition A NAL unit with a particular
value of slice_id shall immediately precede any present coded slice data partition C NAL unit with the same value of
slice_id, if a coded slice data partition B NAL unit with the same value of slice id is not present. If a coded slice
data partition B NAL unit with a particular value of slice id is present, it shall immediately precede any present
coded slice data partition C NAL unit with the same value of slice_id.

NAL units having nal unit_type equal to 0, 12, or in the range of 19 to 31, inclusive, may be present in the access unit
but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics

7.4.2.1 Sequence parameter set RBSP semantics
profile_idc and level_idc indicate the profile and level to which the bitstream conforms, as specified in Annex A.

constraint_set0_flag equal to 1 indicates that the bitstream obeys all constraints specified in subclause A.2.1.
constraint_set0_flag equal to 0 indicates that the bitstream may or may not obey all constraints specified in subclause
A2.1.

constraint_setl flag equal to 1 indicates that the bitstream obeys all constraints specified in subclause A.2.2.
constraint_setl flag equal to 0 indicates that the bitstream may or may not obey all constraints specified in subclause
A2.2.

constraint_set2 flag equal to 1 indicates that the bitstream obeys all constraints specified in subclause A.2.3.
constraint_set2_flag equal to 0 indicates that the bitstream may or may not obey all constraints specified in subclause
A23.

NOTE — When more than one of constraint_set0 flag, constraint _setl flag, or constraint set2 flag are equal to 1, the bitstream
obeys the constraints of all of the indicated subclauses of subclause A.2.

reserved_zero_Sbits shall be equal to 0 in bitstreams conforming to this Recommendation | International Standard.
Other values of reserved_zero_5bits may be specified in the future by ITU-T | ISO/IEC. Decoders shall ignore the value
of reserved _zero_Sbits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value of
seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

NOTE — When feasible, encoders should use distinct values of seq_parameter_set_id when the values of other sequence parameter
set syntax elements differ rather than changing the values of the syntax elements associated with a specific value of
seq_parameter set id.

log2_max_frame num_minus4 specifies the value of the variable MaxFrameNum that is used in frame num related
derivations as follows:

MaxFrameNum = 2(log2_max_frame_num_minus4 + 4) (7_ 1)

The value of log2 max_frame num_minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type specifies the method to decode picture order count (as specified in subclause 8.2.1). The value of
pic_order_cnt_type shall be in the range of 0 to 2, inclusive.

pic_order_cnt_type shall not be equal to 2 in a coded video sequence that contains any of the following

DRAFT ITU-T Rec. H.264 (2002 E) 51

- an access unit containing a non-reference frame followed immediately by an access unit containing a non-
reference picture

- two access units each containing a field with the two fields together forming a non-reference field pair followed
immediately by an access unit containing a non-reference picture

- an access unit containing a non-reference field followed immediately by an access unit containing another non-
reference picture that does not form a complementary field pair with the first of the two access units

log2_max_pic_order_cnt_Isb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the
decoding process for picture order count as specified in subclause 8.2.1 as follows:

MaxPicOrderCntLsb = 2(log2_max_pic_order_cnt_Isb_minus4 +4) (7_2)

The value of log2_max_pic_order_cnt_Isb_minus4 shall be in the range of 0 to 12, inclusive.

delta_pic_order_always zero_flag equal to 1 specifies that delta_pic_order cnt[0] and delta pic_order cnt[1] are
not present in the slice headers of the sequence and shall be inferred to be equal to 0. delta_pic_order always zero flag
equal to 0 specifies that delta pic order cnt[0] is present in the slice headers of the sequence and
delta_pic_order cnt[1] may be present in the slice headers of the sequence.

offset_for_non_ref pic is used to calculate the picture order count of a non-reference picture as specified in 8.2.1. The
value of offset_for non_ref pic shall be in the range of -2*' to 2°! - 1, inclusive.

offset_for_top_to_bottom_field is used to calculate the picture order count of the bottom field in a frame as specified in
8.2.1. The value of offset_for top to_bottom_field shall be in the range of -2*' to 2! - 1, inclusive.

num_ref frames_in_pic_order_cnt_cycle is used in the decoding process for picture order count as specified in
subclause 8.2.1. The value of num_ref frames_in_pic_order cnt_cycle shall be in the range of 0 to 255.

offset_for_ref frame[i] is an element of a list of num_ref frames in pic_order cnt cycle values used in the decoding
process for picture order count as specified in subclause 8.2.1. The value of offset for ref frame[i] shall be in the
range of 23110 23 - 1, inclusive.

num_ref frames specifies the maximum total number of short-term and long-term reference frames, complementary
reference field pairs, and non-paired reference fields used by the decoding process for inter prediction of any picture in
the sequence. num_ref frames also determines the size of the sliding window operation as specified in subclause 8.2.5.3.
The value of num_ref frames shall be in the range of 0 to 16, inclusive.

gaps_in_frame num_value_allowed_flag specifies the allowed values of frame num as specified in subclause 7.4.3
and the decoding process in case of an inferred gap between values of frame num as specified in subclause 8.2.5.2.

pic_width_in_mbs_minusl1 plus 1 specifies the width of each decoded picture in units of macroblocks.

The variable for the picture width in units of macroblocks is derived as follows
PicWidthInMbs = pic_width_in_mbs_minusl + 1 (7-3)
The variable for picture width for the luma component is derived as follows

PicWidthInSamples; = PicWidthInMbs * 16 (7-4)

The variable for picture width for the chroma components is derived as follows
PicWidthInSamplesc = PicWidthInMbs * 8 (7-5)
pic_height_in_map_units_minus1 plus 1 specifies the height in slice group map units of a decoded frame or field.
The variables PicHeightInMapUnits and PicSizeInMapUnits are derived as follows
PicHeightInMapUnits = pic_height in_map units minusl + 1 (7-6)
PicSizeInMapUnits = PicWidthInMbs * PicHeightInMapUnits 7-7

frame_mbs_only_flag equal to 0 specifies that coded pictures of the coded video sequence may either be coded fields or
coded frames. frame _mbs_only_flag equal to 1 specifies that every coded picture of the coded video sequence is a coded
frame containing only frame macroblocks.

The allowed range of values for pic width in mbs minusl, pic_height in_map units minusl, and
frame _mbs_only_flag is specified by constraints in Annex A.

52 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Depending on frame mbs_only_flag the following semantics are assigned to pic_height in_map units_minusl.

- If frame mbs only flag is equal to 0, pic_height in map units minusl is the height of a field in units of
macroblocks.

- Otherwise (frame_mbs only flag is equal to 1), pic_height in map units minusl is the height of a frame in units
of macroblocks.

The variable FrameHeightInMbs is derived as follows

FrameHeightInMbs = (2 — frame_mbs_only_flag) * PicHeightinMapUnits (7-8)

mb_adaptive frame_field_ flag equal to 0 specifies no switching between frame and field macroblocks within a picture.
mb_adaptive_frame field flag equal to 1 specifies the possible use of switching between frame and field macroblocks
within frames. When mb_adaptive frame field flag is not present, it shall be inferred to be equal to 0.

direct_8x8 inference flag specifies the method used in the derivation process for luma motion vectors for B_Skip,
B _Direct 16x16 and B_Direct 8x8 as specified in subclause 8.4.1.2. When frame mbs_only flag is equal to 0,
direct 8x8 inference flag shall be equal to 1.

frame_cropping_flag equal to 1 specifies that the frame cropping offset parameters follow next in the sequence
parameter set. frame cropping_flag equal to 0 specifies that the frame cropping offset parameters are not present.

frame_crop_left_offset, frame_crop_right_offset, frame_crop_top_offset, frame_crop_bottom_offset specify the
samples of a frame within a rectangle as follows.

— If frame_mbs_only flag is equal to 1, the cropping rectangle contains luma samples with horizontal coordinates
from 2 * frame crop left offset to PicWidthInSamples; - (2 * frame crop right offset+ 1) and vertical
coordinates from 2 * frame crop_top_offset to (FrameHeightInMbs * 16) - (2 * frame_crop_bottom_offset + 1),
inclusive. In this case, the value of frame crop left offset shall be in the range of 0 to 8 * PicWidthInMbs -
(frame_crop_right_offset + 1), inclusive; and the value of frame crop top offset shall be in the range of 0
to 8 * FrameHeightInMbs - (frame_crop bottom_offset + 1), inclusive.

— Otherwise (frame _mbs_only flag is equal to 0), the cropping rectangle contains luma samples with horizontal
coordinates from 2 * frame crop left offset to PicWidthInSamples; - (2 * frame crop right offset+ 1) and
vertical coordinates from 4 * frame_crop_top_offset to (FrameHeightInMbs * 16) -
(4 * frame crop_bottom_offset + 1), inclusive. In this case the value of frame crop_left offset shall be in the
range of 0 to8 * PicWidthInMbs - (frame crop_right offset+ 1), inclusive; and the value of
frame crop_top_offset shall be in the range of 0 to4 * FrameHeightInMbs - (frame_crop_bottom_offset + 1),
inclusive.

When frame_cropping_flag is equal to 0, the following values shall be inferred: frame crop left offset =0,
frame crop_right offset =0, frame_crop_top_offset = 0, and frame crop_bottom_offset = 0.

The specified samples of the two chroma arrays are the samples having frame coordinates (x / 2,y /2), where (X,y)
are the frame coordinates of the specified luma samples.

For decoded fields, the specified samples of the decoded field are the samples that fall within the rectangle specified in
frame coordinates.

vui_parameters_present_flag equal to 1 specifies that the vui_parameters() syntax structure specified in Annex E is
present next in the bitstream. vui_parameters_present flag equal to 0 specifies that the vui_parameters() syntax structure
specified in Annex E is not present next in the bitstream.

7.4.2.2 Picture parameter set RBSP semantics

pic_parameter_set id identifies the picture parameter set that is referred to in the slice header. The value of
pic_parameter_set_id shall be in the range of 0 to 255, inclusive.

seq_parameter_set_id refers to the active sequence parameter set. The value of seq parameter set id shall be in the
range of 0 to 31, inclusive.

entropy_coding_mode_flag selects the entropy decoding method to be applied for the syntax elements for which two
descriptors appear in the syntax tables as follows.

- Ifentropy_coding_mode flag is equal to 0, the method specified by the left descriptor in the syntax table is applied
(Exp-Golomb coded, see subclause 9.1 or CAVLC, see subclause 9.2).

- Otherwise (entropy coding mode flag is equal to 1), the method specified by the right descriptor in the syntax table
is applied (CABAC, see subclause 9.3).

DRAFT ITU-T Rec. H.264 (2002 E) 53

pic_order_present_flag equal to 1 specifies that the picture order count related syntax elements are present in the slice
headers as specified in subclause 7.3.3. pic_order present flag equal to 0 specifies that the picture order count related
syntax elements are not present in the slice headers.

num_slice_groups_minusl plus 1 specifies the number of slice groups for a picture. When num_slice_groups_minusl is
equal to 0, all slices of the picture belong to the same slice group. The allowed range of num_slice_groups minusl is
specified in Annex A.

slice_group_map_type specifies how the mapping of slice group map units to slice groups is coded. The value of
slice_group_map_type shall be in the range of 0 to 6, inclusive.

slice_group map_type equal to 0 specifies interleaved slice groups.
slice_group map_type equal to 1 specifies a dispersed slice group mapping.
slice_group_map_type equal to 2 specifies one or more “foreground” slice groups and a “leftover” slice group.

slice_group map_type values equal to 3, 4, and 5 specify changing slice groups. When num_slice groups minusl is not
equal to 1, slice_group_map_type shall not be equal to 3, 4, or 5.

slice_group map_type equal to 6 specifies an explicit assignment of a slice group to each slice group map unit.

Slice group map units are specified as follows:

— If frame _mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 1 and the coded picture is a
frame, the slice group map units are macroblock pair units.

— If frame mbs_only flag is equal to 1 or a coded picture is a field, the slice group map units are units of
macroblocks.

— Otherwise (frame _mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and the coded
picture is a frame), the slice group map units are units of two macroblocks that are vertically contiguous as in a
frame macroblock pair of an MBAFF frame.

run_length_minus1[i] is used to specify the number of consecutive slice group map units to be assigned to the i-th
slice group in raster scan order of slice group map units. The value of run_length minusl1[i] shall be in the range of 0 to
PicSizeInMapUnits - 1, inclusive.

top_left[i | and bottom_right[i] specify the top-left and bottom-right corners of a rectangle, respectively. top left[i]
and bottom_right[i | are slice group map unit positions in a raster scan of the picture for the slice group map units. For
each rectangle i, all of the following constraints shall be obeyed by the values of the syntax elements top left[i] and
bottom_right[i]

- top_left[i] shall be less than or equal to bottom right[i] and bottom right[i] shall be less than
PicSizeInMapUnits.

- (top_left[i] % PicWidthInMbs) shall be less than or equal to the value of (bottom_right[i] % PicWidthInMbs).

slice_group_change_direction_flag is used with slice group map type to specify the refined map type when
slice_group map typeis 3,4, or 5.

slice_group_change rate minusl is used to specify the variable SliceGroupChangeRate. SliceGroupChangeRate
specifies the multiple in number of slice group map units by which the size of a slice group can change from one picture
to the next. The value of slice_group_change rate minusl shall be in the range of 0 to PicSizeInMapUnits — 1, inclusive.
The SliceGroupChangeRate variable is specified as follows:

SliceGroupChangeRate = slice_group_change_rate_minusl + 1 (7-9)

pic_size_in_map_units_minusl is used to specify the number of slice group map units in the picture.
pic_size in _map_units_minus] shall be equal to PicSizeInMapUnits - 1.

slice_group_id[i] identifies a slice group of the i-th slice group map unit in raster scan order. The size of the
slice_group id[i] syntax element is Ceil(Log2(num_slice groups minusl + 1)) bits. The value of slice group id[i]
shall be in the range of 0 to num_slice_groups minusl1, inclusive.

num_ref idx_10_active_minusl specifies the maximum reference index for reference picture list O that shall be used to
decode each slice of the picture in which list 0 is used if num_ref idx active override flag is equal to 0 for the slice.
When MbaffFrameFlag is equal to 1, num_ref idx 10_active_minusl is the maximum index value for the decoding of
frame macroblocks and 2 * num ref idx 10 active_minusl + 1 is the maximum index value for the decoding of field
macroblocks. The value of num_ref idx 10 _active minusl shall be in the range of 0 to 31, inclusive.

54 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

num_ref_idx_l1_active_minus1 has the same semantics as num_ref idx _10_active minusl with 10 and list 0 replaced
by 11 and list 1, respectively.

weighted_pred_flag equal to O specifies that weighted prediction shall not be applied to P and SP slices.
weighted pred flag equal to 1 specifies that weighted prediction shall be applied to P and SP slices.

weighted_bipred_idc equal to 0 specifies that the default weighted prediction shall be applied to B slices.
weighted bipred idc equal to 1 specifies that explicit weighted prediction shall be applied to B slices.
weighted_bipred_idc equal to 2 specifies that implicit weighted prediction shall be applied to B slices. The value of
weighted bipred_idc shall be in the range of 0 to 2, inclusive.

pic_init_qp_minus26 specifies the initial value minus 26 of SliceQPy for each slice. The initial value is modified at the
slice layer when a non-zero value of slice qp_delta is decoded, and is modified further when a non-zero value of
mb_qp_delta is decoded at the macroblock layer. The value of pic_init_qp_minus26 shall be in the range of -26 to +25,
inclusive.

pic_init_qs_minus26 specifies the initial value minus 26 of SliceQSy for all macroblocks in SP or SI slices. The initial
value is modified at the slice layer when a non-zero value of slice gs delta is decoded. The value of
pic_init_gs_minus26 shall be in the range of -26 to +25, inclusive.

chroma_qp_index_offset specifies the offset that shall be added to QPy and QSy for addressing the table of QP values.
The value of chroma_qp_index_offset shall be in the range of -12 to +12, inclusive.

deblocking_filter_control_present_flag equal to 1 specifies that a set of syntax elements controlling the characteristics
of the deblocking filter is present in the slice header. deblocking_filter control present flag equal to 0 specifies that the
set of syntax elements controlling the characteristics of the deblocking filter is not present in the slice headers and their
inferred values are in effect.

constrained_intra_pred_flag equal to O specifies that intra prediction allows usage of neighbouring inter macroblock
residual data and decoded samples for the prediction of intra macroblocks, whereas constrained_intra_pred flag equal
to 1 specifies constrained intra prediction, where intra prediction only uses residual data and decoded samples from I or
ST macroblock types.

redundant_pic_cnt_present_flag equal to 0 specifies that the redundant_pic_cnt syntax element is not present in slice
headers, data partitions B, and data partitions C that refer (either directly or by association with a corresponding data
partition A) to the picture parameter set. redundant pic_cnt present flag equal to 1 specifies that the redundant pic_cnt
syntax element is present in all slice headers, data partitions B, and data partitions C that refer (either directly or by
association with a corresponding data partition A) to the picture parameter set.

7.4.2.3 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of coded
pictures from VCL NAL units.

7.4.2.3.1 Supplemental enhancement information message semantics

An SEI NAL unit contains one or more SEI messages. Each SEI message consists of the variables specifying the type
payloadType and size payloadSize of the SEI payload. SEI payloads are specified in Annex D. The derived SEI payload
size payloadSize is specified in bytes and shall be equal to the number of bytes in the SEI payload.

ff_byte is a byte equal to OxFF identifying a need for a longer representation of the syntax structure that it is used within.
last_payload_type_byte is the last byte of the payload type of an SEI message.

last_payload_size byte is the last byte of the size of an SEI message.

7.4.2.4 Access unit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify the
detection of the boundary between access units. There is no normative decoding process associated with the access unit
delimiter.

primary_pic_type indicates that the slice type values for all slices of the primary coded picture are members of the set
listed in Table 7-2 for the given value of primary pic_type.

DRAFT ITU-T Rec. H.264 (2002 E) 55

Table 7-2 — Meaning of primary_pic_type

primary_pic_type | slice_type values that may be present in the primary coded picture

0 I

ILP

ILP,B

SI

SI, SP

I, SI

I, SL, P, SP
I,SL,P,SP,B

N[N WwW N =

7.4.2.5 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent access unit in the bitstream in decoding order (if any) shall
be an IDR access unit. The syntax content of the SODB and RBSP for the end of sequence RBSP are empty. No
normative decoding process is specified for an end of sequence RBSP.

7.4.2.6 End of stream RBSP semantics

The end of stream RBSP indicates that no additional NAL units shall be present in the bitstream that are subsequent to
the end of stream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of stream RBSP are
empty. No normative decoding process is specified for an end of stream RBSP.

7.4.2.7 Filler data RBSP semantics

The filler data RBSP contains bytes whose value shall be equal to 0XFF. No normative decoding process is specified for
a filler data RBSP.

ff_byte is a byte equal to OxFF.

7.4.2.8 Slice layer without partitioning RBSP semantics

The slice layer without partitioning RBSP consists of a slice header and slice data.
7.4.2.9 Slice data partition RBSP semantics

7.4.2.9.1 Slice data partition A RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Partition A
contains all syntax elements of category 2.

Category 2 syntax elements include all syntax elements in the slice header and slice data syntax structures other than the
syntax elements in the residual() syntax structure.

slice_id identifies the slice associated with the data partition. Each slice shall have a unique slice_id value within the
coded picture that contains the slice. When arbitrary slice order is not allowed as specified in Annex A, the first slice of a
coded picture, in decoding order, shall have slice_id equal to 0 and the value of slice_id shall be incremented by one for
each subsequent slice of the coded picture in decoding order.

The range of slice_id is specified as follows.
— If MbaffFrameFlag is equal to 0, slice_id shall be in the range of 0 to PicSizeInMbs - 1, inclusive.

— Otherwise (MbaffFrameFlag is equal to 1), slice id shall be in the range of 0 to PicSizeInMbs / 2 - 1, inclusive.

7.4.2.9.2 Slice data partition B RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into one to three separate partitions.
Slice data partition B contains all syntax elements of category 3.

Category 3 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types I and SI as specified in Table 7-7.

slice_id has the same semantics as specified in subclause 7.4.2.9.1.

56 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

redundant_pic_cnt shall be equal to 0 for slices and slice data partitions belonging to the primary coded picture. The
redundant_pic_cnt shall be greater than 0 for coded slices and coded slice data partitions in redundant coded pictures.
When redundant_pic_cnt is not present, its value shall be inferred to be equal to 0. The value of redundant_pic_cnt shall
be in the range of 0 to 127, inclusive.

- If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 3 in
the slice data for a slice, a slice data partition B RBSP shall be present having the same value of slice id and
redundant_pic_cnt as in the slice data partition A RBSP.

- Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax elements
of category 3 in the slice data for a slice), no slice data partition B RBSP shall be present having the same value of
slice_id and redundant_pic_cnt as in the slice data partition A RBSP.

7.4.2.9.3 Slice data partition C RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition C contains all syntax elements of category 4.

Category 4 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types P and B as specified in Table 7-7.

slice_id has the same semantics as specified in subclause 7.4.2.9.1.
redundant_pic_cnt has the same semantics as specified in subclause 7.4.2.9.2.

- If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 4 in
the slice data for a slice, a slice data partition C RBSP shall be present having the same value of slice id and
redundant pic_cnt as in the slice data partition A RBSP.

- Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax elements
of category 4 in the slice data for a slice), no slice data partition C RBSP shall be present having the same value of
slice_id and redundant_pic_cnt as in the slice data partition A RBSP.

7.4.2.10 RBSP slice trailing bits semantics
cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000.

Let NumBytesInVcINALunits be the sum of the values of NumBytesInNALunit for all VCL NAL units of a coded
picture.

When entropy_coding_mode _flag is equal to 1, the number of bins resulting from decoding the contents of all VCL NAL

units of a coded picture shall not exceed (32 + 3) * NumBytesInVcINALunits + 96 * PicSizeInMbs.

NOTE — The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units can be
met by inserting a number of cabac zero word syntax elements to increase the value of NumBytesInVcINALunits. Each
cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit
contents that result in requiring inclusion of an emulation_prevention_three byte for each cabac_zero word).

7.4.2.11 RBSP trailing bits semantics
rbsp_stop_one_bit is a single bit equal to 1.

rbsp_alignment_zero_bit is a single bit equal to 0.

7.4.3 Slice header semantics

When present, the value of the slice header syntax elements pic_parameter set id, frame num, field pic flag,
bottom_field flag, idr_pic_id, pic_order_cnt_lsb, delta_pic_order cnt bottom, delta_pic_order cnt[0],
delta pic_order cnt[1], sp_for switch flag, and slice group change cycle shall be the same in all slice headers of a
coded picture.

first mb_in_slice specifies the address of the first macroblock in the slice. When arbitrary slice order is not allowed as
specified in Annex A, the value of first mb_in_slice shall not be less than the value of first mb_in slice for any other
slice of the current picture that precedes the current slice in decoding order.

The first macroblock address of the slice is derived as follows.

— If MbaffFrameFlag is equal to 0, first mb_in_slice is the macroblock address of the first macroblock in the slice,
and first_ mb_in_slice shall be in the range of 0 to PicSizeInMbs - 1, inclusive.

— Otherwise (MbaffFrameFlag is equal to 1), first mb_in_slice * 2 is the macroblock address of the first macroblock
in the slice, which is the top macroblock of the first macroblock pair in the slice, and first mb_in_slice shall be in
the range of 0 to PicSizeInMbs / 2 - 1, inclusive.

DRAFT ITU-T Rec. H.264 (2002 E) 57

slice_type specifies the coding type of the slice according to Table 7-3.

Table 7-3 — Name association to slice_type

slice_type Name of slice_type
P (P slice)

B (B slice)

I (I slice)

SP (SP slice)
SI (SI slice)
P (P slice)

B (B slice)

I (I slice)

SP (SP slice)
SI (ST slice)

O ||| |W (| —=|O

slice_type values in the range 5..9 specify, in addition to the coding type of the current slice, that all other slices of the
current coded picture shall have a value of slice_type equal to the current value of slice type or equal to the current value
of slice_type — 5.

When nal_unit_type is equal to 5 (IDR picture), slice_type shall be equal to 2, 4, 7, or 9.

pic_parameter_set_id specifies the picture parameter set in use. All slices belonging to a picture shall have the same
value of pic_parameter_set id. The value of pic_parameter_set_id shall be in the range of 0 to 255, inclusive.

frame_num is used as a unique identifier for each short-term reference frame and shall be represented by
log2 max frame num minus4 + 4 bits in the bitstream. frame num is constrained as follows:

The variable PrevRefFrameNum is derived as follows.
- If the current picture is an IDR picture, PrevRefFrameNum is set equal to 0.

- Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set equal to the value of frame num for
the previous access unit in decoding order that contains a reference picture.

The value of frame _num is constrained as follows.
- Ifthe current picture is an IDR picture, frame num shall be equal to 0.

- Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access
unit in decoding order that contains a reference picture as the preceding reference picture, the value of frame num
for the current picture shall not be equal to PrevRefFrameNum unless all of the following three conditions are true.

- the current picture and the preceding reference picture belong to consecutive access units in decoding order
- the current picture and the preceding reference picture are reference fields having opposite parity

- one or more of the following conditions is true

the preceding reference picture is an IDR picture
— the preceding reference picture includes a memory management control operation syntax element equal
to5

NOTE - If the preceding reference picture includes a memory management_control_operation syntax element
equal to 5, PrevRefFrameNum is equal to 0.

— there is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture does not have frame num equal to
PrevRefFrameNum

— there is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture is not a reference picture

When gaps_in_frame num_value allowed flag is equal to 0 and frame num is not equal to PrevRefFrameNum,
frame num shall be equal to (PrevRefFrameNum + 1) % MaxFrameNum.

58 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

When the value of frame num is not equal to PrevRefFrameNum, there shall not be any previous field or frame in
decoding order that is currently marked as "used for short-term reference" that has a value of frame num equal to any
value taken on by the variable UnusedShortTermFrameNum in the following:

UnusedShortTermFrameNum = (PrevRefFrameNum + 1) % MaxFrameNum
while(UnusedShortTermFrameNum != frame num) (7-10)
UnusedShortTermFrameNum = (UnusedShortTermFrameNum + 1) % MaxFrameNum

A picture including a memory management_control operation equal to 5 shall have frame num constraints as described
above, however, after the decoding of the current picture and the processing of the memory management control
operations, shall be inferred to have had frame num equal to 0 for all subsequent use in the decoding process.

NOTE — When the primary coded picture is not an IDR picture and does not contain memory management control operation
syntax element equal to 5, the value of frame num of a corresponding redundant coded picture is the same as the value of
frame num in the primary coded picture. Alternatively, the redundant coded picture includes a
memory_management_control_operation syntax element equal to 5 and the corresponding primary coded picture is an IDR
picture.

field_pic_flag equal to 1 specifies that the slice is a slice of a coded field. field pic_flag equal to 0 specifies that the slice
is a slice of a coded frame. When field pic_flag is not present it shall be inferred to be equal to 0.

The variable MbaffFrameFlag is derived as follows.

MbaffFrameFlag = (mb_adaptive frame field flag && !field pic flag) (7-11)

The variable for the picture height in units of macroblocks is derived as follows

PicHeightInMbs = FrameHeightInMbs / (1 + field_pic_flag) (7-12)

The variable for picture height for the luma component is derived as follows

PicHeightInSamples;, = PicHeightInMbs * 16 (7-13)

The variable for picture height for the chroma component is derived as follows

PicHeightInSamplesc = PicHeightInMbs * 8 (7-14)

The variable PicSizeInMbs for the current picture is derived according to:

PicSizeInMbs = PicWidthInMbs * PicHeightInMbs (7-15)

The variable MaxPicNum is derived as follows.

- Iffield pic_flagis equal to 0, MaxPicNum is set equal to MaxFrameNum.

- Otherwise (field pic_flag is equal to 1), MaxPicNum is set equal to 2*¥*MaxFrameNum.
The variable CurrPicNum is derived as follows.

- Iffield_pic_flag is equal to 0, CurrPicNum is set equal to frame_num.

- Otherwise (field pic_flag is equal to 1), CurrPicNum is set equal to 2 * frame num + 1.

bottom_field_flag equal to 1 specifies that the slice is part of a coded bottom field. bottom field flag equal to 0
specifies that the picture is a coded top field. When this syntax element is not present for the current slice, it shall be
inferred to be equal to 0.

idr_pic_id identifies an IDR picture. The values of idr_pic_id in all the slices of an IDR picture shall remain unchanged.
When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in the slices of
the first such IDR access unit shall differ from the idr_pic_id in the second such IDR access unit. The value of
idr_pic_id shall be in the range of 0 to 65535, inclusive.

pic_order_cnt_lIsb specifies the picture order count coded in modulo MaxPicOrderCntLsb arithmetic for the top field of
a coded frame or for a coded field. An IDR picture shall have pic_order cnt Isb equal to 0. The size of the
pic_order_cnt_Isb variable is log2_max_pic_order _cnt Isb_minus4 + 4 bits. The value of the pic_order_cnt_Isb shall be
in the range of 0 to MaxPicOrderCntLsb — 1, inclusive.

delta_pic_order_cnt_bottom specifies the picture order count difference between the bottom field and the top field of a
coded frame. The value of delta pic_order cnt bottom shall be in the range of —2*' to 2*' - 1, inclusive. When this
syntax element is not present in the bitstream for the current slice, it shall be inferred to be equal to 0.

DRAFT ITU-T Rec. H.264 (2002 E) 59

delta_pic_order_cnt[O | specifies the picture order count difference from the expected picture order count for the top
field of a coded frame or for a coded field as specified in subclause 8.2.1. The value of delta_pic_order cnt[0] shall be
in the range of -2*' to 2*' - 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it
shall be inferred to be equal to 0.

delta_pic_order_cnt[1] specifies the picture order count difference from the expected picture order count for the
bottom field of a coded frame specified in subclause 8.2.1. The value of delta_pic_order_cnt[1] shall be in the range of -
2% to 2% - 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it shall be inferred
to be equal to 0.

redundant_pic_cnt shall be equal to 0 for slices and slice data partitions belonging to the primary coded picture. The
value of redundant_pic_cnt shall be greater than 0 for coded slices or coded slice data partitions of a redundant coded
picture. When redundant_pic_cnt is not present in the bitstream, its value shall be inferred to be equal to 0. The value of
redundant_pic_cnt shall be in the range of 0 to 127, inclusive.

NOTE - There should be no noticeable difference between the co-located areas of the decoded primary picture and any decoded
redundant pictures.

The value of pic_parameter_set_id in a coded slice or coded slice data partition of a redundant coded picture shall be
such that the value of pic_order_present_flag in the picture parameter set in use in a redundant coded picture is equal to
the value of pic_order_present flag in the picture parameter set in use in the corresponding primary coded picture.

When present in the primary coded picture and any redundant coded picture, the following syntax elements shall have
the same value: field pic_flag, bottom field flag, idr pic id, pic_order cnt Isb, pic_order cnt Isb,
delta_pic_order cnt bottom, delta_pic_order cnt[O], and delta_pic_order cnt[1].

When the value of nal_ref idc in one VCL NAL unit of an access unit is equal to 0, the value of nal_ref idc in all other
VCL NAL units of the same access unit shall be equal to 0.
NOTE — The above constraint also has the following implications. If the value of nal ref idc for the VCL NAL units of the
primary coded picture is equal to 0, the value of nal_ref idc for the VCL NAL units of any corresponding redundant coded picture
are equal to 0; otherwise (the value of nal_ref idc for the VCL NAL units of the primary coded picture is greater than 0), the value
of'nal ref idc for the VCL NAL units of any corresponding redundant coded picture are also greater than 0.

The marking status of reference pictures and the value of frame num after the decoded reference picture marking process
as specified in subclause 8.2.5 is invoked for the primary coded picture or any redundant coded picture of the same
access unit shall be identical regardless whether the primary coded picture or any redundant coded picture (instead of the
primary coded picture) of the access unit would be decoded.
NOTE — The above constraint also has the following implications.
If a primary coded picture is not an IDR picture, the contents of the dec_ref pic_marking() syntax structure must be identical in
all slice headers of the primary coded picture and all redundant coded pictures corresponding to the primary coded picture.
Otherwise (a primary coded picture is an IDR picture), the following applies.
If a redundant picture corresponding to the primary coded picture is not an IDR pictures, all slice headers of the redundant picture
must contain a dec_ref pic_marking syntax() structure including a memory management control_operation syntax element equal
to 5.
Otherwise (the redundant coded picture is an IDR picture) the following applies.
The contents of the dec_ref pic_marking() syntax structure must be identical in all slice headers of the primary coded picture and
the redundant coded picture corresponding to the primary coded picture.
If the value of long_term reference_flag in the primary coded picture is equal to 0, the dec_ref pic_marking syntax structure of
the redundant coded picture must not include a memory _management control_operation syntax element equal to 6.

Otherwise (the value of long_term reference flag in the primary coded picture is equal to 1), the value of the
MaxLongTermFrameldx variable before decoding the primary coded picture must be equal to 0 and the dec_ref pic_marking
syntax structure of the redundant coded picture must include memory_management control _operation syntax elements equal to 5,
4, and 6 in decoding order, and the value of max long term frame idx plusl must be equal to 1, and the value of
long term_frame idx must be equal to 0.

There is no required decoding process for a coded slice or coded slice data partition of a redundant coded picture. When
the redundant_pic_cnt in the slice header of a coded slice is greater than 0, the decoder may discard the coded slice.
However, a coded slice or coded slice data partition of any redundant coded picture shall obey the same constraints as a
coded slice or coded slice data partition of a primary picture.
NOTE — When some of the samples in the decoded primary picture cannot be correctly decoded due to errors or losses in
transmission of the sequence and the coded redundant slice can be correctly decoded, the decoder should replace the samples of
the decoded primary picture with the corresponding samples of the decoded redundant slice. When more than one redundant slice
covers the relevant region of the primary picture, the redundant slice having the lowest value of redundant pic_cnt should be used.

Redundant slices and slice data partitions having the same value of redundant pic_cnt belong to the same redundant
picture. Decoded slices within the same redundant picture need not cover the entire picture area and shall not overlap.

direct_spatial mv_pred_flag specifies the method used in the decoding process to derive motion vectors and reference
indices for inter prediction.

60 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

If direct spatial mv_pred flag is equal to1l, the derivation process for luma motion vectors for B_Skip,
B Direct 16x16, and B Direct 8x8 in subclause 8.4.1.2 shall use spatial direct mode prediction as specified in
subclause 8.4.1.2.2.

Otherwise (direct spatial mv_pred flag is equal to 0), the derivation process for luma motion vectors for B_Skip,
B _Direct_16x16, and B Direct 8x8 in subclause 8.4.1.2 shall use temporal direct mode prediction as specified in
subclause 8.4.1.2.3.

num_ref_idx_active_override_flag equal to(O specifies that the wvalues of the syntax -elements
num_ref idx_10_active minusl and num_ref idx 11 active minus] specified in the referred picture parameter set are in
effect. num_ref idx active override flag equal to1 specifies that the num_ref idx 10 active minusl and
num_ref idx 11 _active minusl specified in the referred picture parameter set are overridden for the current slice (and
only for the current slice) by the following values in the slice header.

When the current slice is a P, SP, or B slice and field pic_flag is equal to0 and the value of
num_ref idx_10_active minusl in the picture parameter set exceeds 15, num_ref idx active override flag shall be
equal to 1.

When the current slice is a B slice and field pic_flag is equal to 0 and the value of num_ref idx 11_active_minus] in the
picture parameter set exceeds 15, num_ref idx_active_override flag shall be equal to 1.

num_ref idx 10 _active_minusl specifies the maximum reference index for reference picture list 0 that shall be used to
decode the slice.

The range of num_ref idx 10 active minusl] is specified as follows.

— If field pic_flag is equal to 0, num_ref idx 10 active minusl shall be in the range of 0 to 15, inclusive. When
MbaffFrameFlag is equal to 1, num_ref idx 10 _active minusl is the maximum index value for the decoding of
frame macroblocks and 2 * num_ref idx 10 active minusl + 1 is the maximum index value for the decoding of
field macroblocks.

— Otherwise (field_pic_flag is equal to 1), num_ref idx 10 active minus] shall be in the range of 0 to 31, inclusive.

num_ref_idx_l1_active_minus1 has the same semantics as num_ref idx_10_active minusl with 10 and list 0 replaced
by 11 and list 1, respectively.

cabac_init_idc specifies the index for determining the initialisation table used in the initialisation process for context
variables. The value of cabac_init_idc shall be in the range of 0 to 2, inclusive.

slice_qp_delta specifies the initial value of QPy to be used for all the macroblocks in the slice until modified by the
value of mb_qp_delta in the macroblock layer. The initial QPy quantisation parameter for the slice is computed as:

SliceQPy =26 + pic_init qp_minus26 + slice_qp_delta (7-16)

The value of slice_qp_delta shall be limited such that QPy is in the range of 0 to 51, inclusive.
sp_for_switch_flag specifies the decoding process to be used to decode P macroblocks in an SP slice as follows.

- If sp_for_switch flag is equal to 0, the P macroblocks in the SP slice shall be decoded using the SP decoding
process for non-switching pictures as specified in subclause 8.6.1.

- Otherwise (sp_for switch_flag is equal to 1), the P macroblocks in the SP slice shall be decoded using the SP and SI
decoding process for switching pictures as specified in subclause 8.6.2.

slice_qs_delta specifies the value of QSy for all the macroblocks in SP and SI slices. The QSy quantisation parameter
for the slice is computed as:

QSy =26 + pic_init gs_minus26 + slice_qs_delta (7-17)

The value of slice _gs_delta shall be limited such that QSy is in the range of 0 to 51, inclusive. This value of QSy is used
for the decoding of all macroblocks in SI slices with mb_type equal to SI and all macroblocks in SP slices with
prediction mode equal to inter.

disable_deblocking_filter_idc specifies whether the operation of the deblocking filter shall be disabled across some
block edges of the slice and specifies for which edges the filtering is disabled. When disable deblocking_filter idc is not
present in the slice header, the value of disable deblocking_filter idc shall be inferred to be equal to 0.

The value of disable deblocking_filter idc shall be in the range of 0 to 2, inclusive.

DRAFT ITU-T Rec. H.264 (2002 E) 61

slice_alpha_c0_offset_div2 specifies the offset used in accessing the o and CO deblocking filter tables for filtering
operations controlled by the macroblocks within the slice. From this value, the offset that shall be applied when
addressing these tables shall be computed as:

FilterOffsetA = slice_alpha c0 offset div2 <<'1 (7-18)

The value of slice_alpha c0 offset_div2 shall be in the range of -6 to +6, inclusive. When slice_alpha_c0_offset div2 is
not present in the slice header, the value of slice_alpha_c0_offset div2 shall be inferred to be equal to 0.

slice_beta_offset_div2 specifies the offset used in accessing the deblocking filter table for filtering operations
controlled by the macroblocks within the slice. From this value, the offset that is applied when addressing the f table of
the deblocking filter shall be computed as:

FilterOffsetB = slice_beta_offset div2 <<1 (7-19)

The value of slice_beta offset div2 shall be in the range of -6 to +6, inclusive. When slice beta offset div2 is not
present in the slice header the value of slice_beta offset div2 shall be inferred to be equal to 0.

slice_group_change cycle is used to derive the number of slice group map units in slice group 0 when
slice_group map _type is equal to 3, 4, or 5, as specified by

MapUnitsInSliceGroup0O = Min(slice_group_change cycle * SliceGroupChangeRate, PicSizeInMapUnits) (7-20)

The value of slice_group change cycle is represented in the bitstream by the following number of bits

Ceil(Log2(PicSizeInMapUnits + SliceGroupChangeRate + 1)) (7-21)

The value of slice_group change cycle shall be in the range of 0 to Ceil(PicSizeInMapUnits+SliceGroupChangeRate),
inclusive.

7.4.3.1 Reference picture list reordering semantics

The syntax elements reordering of pic nums_idc, abs_diff pic num minusl, and long_term pic num specify the
change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref_pic_list reordering_flag 10 equal to 1 specifies that the syntax element reordering_of pic_nums_idc is present for
specifying reference picture list 0. ref pic_list reordering flag 10 equal to O specifies that this syntax element is not
present.

When ref pic_list_reordering_flag 10 is equal to 1, the number of times that reordering of pic nums_idc is not equal
to 3 following ref pic_list_reordering_flag 10 shall not exceed num_ref idx 10 active minusl + 1.

When RefPicListO[num_ref idx 10 active_minusl] in the initial reference picture list produced as specified in
subclause 8.2.4.2 is equal to "no reference picture", ref pic list reordering flag 10 shall be equal to1 and
reordering_of pic_nums_idc shall not be equal to 3 until RefPicListO] num_ref idx 10 active minus]] in the reordered
list produced as specified in subclause 8.2.4.3 is not equal to "no reference picture".

ref _pic_list reordering_flag 11 equal to 1 specifies that the syntax element reordering of pic_nums_idc is present for
specifying reference picture list 1. ref pic_list reordering flag 11 equal to O specifies that this syntax element is not
present.

When ref pic list reordering flag 11 is equal to 1, the number of times that reordering of pic_ nums_idc is not equal
to 3 following ref pic_list_reordering_flag 11 shall not exceed num_ref idx_ 11 active minusl + 1.

When decoding a B slice and RefPicListl[num_ref idx 11 active minusl] in the initial reference picture list produced
as specified in subclause 8.2.4.2 is equal to "no reference picture", ref pic_list_reordering flag 11 shall be equal to 1 and
reordering of pic nums_idc shall not be equal to 3 until RefPicListl[num ref idx 11 active minusl] in the reordered
li