H.264/AVC Video Coding Standard

- Standardization, History, Goals, and Applications
- Codec Overview
 - Video Coding Layer (VCL)
 - Picture Partitioning and Interlace Processing
 - Codec Structure
 - Motion-Compensated Prediction
 - Intra Prediction
 - Prediction Residual Coding
 - Deblocking Filter
 - Encoder Test Model
- Performance
- Network Abstraction Layer (NAL)
 - NAL Units and Types
 - RTP Carriage and Byte Stream Format

0

The JVT Project

- ITU-T SG16 H.26P and H.26L plans in 1993 (H.26P became H.263)
- ITU-T Q.6/SG16 (VCEG Video Coding Experts Group) formed for ITU-T standardization activity for video compression since 1997
- August 1999: 1st test model (TML-1) of H.26L
- December 2001: Formation of the Joint Video Team (JVT) between VCEG and ISO/IEC JTC 1/SC 29/WG 11 (MPEG - Moving Pictures Experts Group) to establish a joint standard project - H.264 / MPEG4-AVC (similar to H.262 / MPEG-2 Video);
- JVT Chairs: G. J. Sullivan, A. Luthra, and T. Wiegand
- ITU-T Approval: May 2003 ITU-T SG16 Final Standard Approved
- ISO/IEC Approval: March 2003 Final Draft International Standard currently balloting
- Extensions Project: Professional Extensions until April 2004

Goals

Improved Coding Efficiency

- Average bit rate reduction of 50% given fixed fidelity compared to any other standard
- · Complexity vs. coding efficiency scalability

Improved Network Friendliness

- Issues examined in H.263 and MPEG-4 are further improved
- Anticipate error-prone transport over mobile networks and the wired and wireless Internet

Simple syntax specification

- Targeting simple and clean solutions
- Avoiding any excessive quantity of optional features or profile configurations

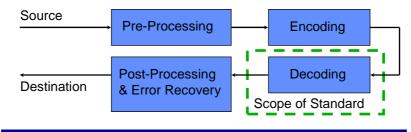
Applications

- Entertainment Video (1-8+ Mbps, higher latency)
 - Broadcast / Satellite / Cable / DVD / VoD / FS-VDSL / ...
 - DVB/ATSC/SCTE, DVD Forum, DSL Forum
- Conversational Services (usu. <1Mbps, low latency)
 - H.320 Conversational
 circuit-switched
 - 3GPP Conversational H.324/M

3GPP Conversational IP/RTP/SIP

- H.323 Conversational Internet/best effort IP/RTP
- packet-switched
- Streaming Services (usu. lower bit rate, higher latency)
 - 3GPP Streaming IP/RTP/RTSP
 - Streaming IP/RTP/RTSP (without TCP fallback)
- Other Services
 - 3GPP Multimedia Messaging Services

Relationship to Other Standards

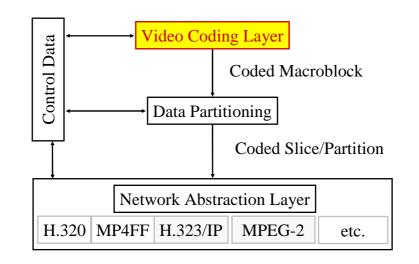

- Identical specifications have been approved in both ITU-T / VCEG and ISO/IEC / MPEG
- In ITU-T / VCEG this is a new & separate standard
 - ITU-T Recommendation H.264
 - ITU-T Systems (H.32x) will be modified to support it
- In ISO/IEC / MPEG this is a new "part" in the MPEG-4 suite
 - · Separate codec design from prior MPEG-4 visual
 - New part 10 called "Advanced Video Coding" (AVC similar to "AAC" position in MPEG-2 as separate codec)
 - · MPEG-4 Systems / File Format has been modified to support it
 - H.222.0 | MPEG-2 Systems also modified to support it
- IETF finalizing RTP payload packetization

4

The Scope of Picture and Video Coding Standardization

Only Restrictions on the *Bitstream*, *Syntax*, and *Decoder* are standardized:

- Permits optimization beyond the obvious
- Permits complexity reduction for implementability
- Provides no guarantees of quality

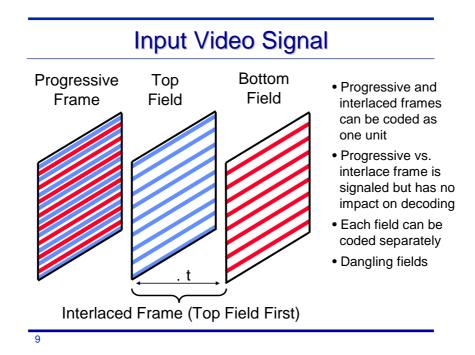


Profiles & Levels Concepts

- Many standards contain different configurations of capabilities – often based in "profiles" & "levels"
 - · A profile is usually a set of algorithmic features
 - A level is usually a degree of capability (e.g. resolution or speed of decoding)
- H.264/AVC has three profiles
 - Baseline (lower capability plus error resilience, e.g., videoconferencing, mobile video)
 - Main (high compression quality, e.g., broadcast)
 - Extended (added features for efficient streaming)

6

H.264|AVC Layer Structure

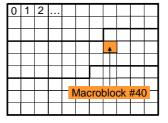


High-Level VCL Summary

- Video coding layer is based on hybrid video coding and similar in spirit to other standards but with important differences
- Some new key aspects are:
 - Enhanced motion compensation
 - Small blocks for transform coding
 - Improved de-blocking filter
 - Enhanced entropy coding

8

 Substantial bit-rate savings relative to other standards for the same quality

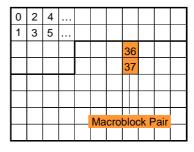

Partitioning of the Picture

Slices:

10

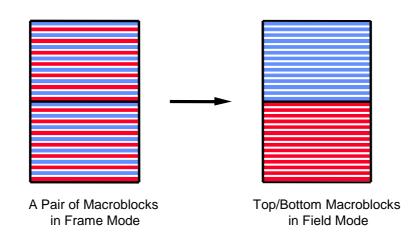
- A picture is split into 1 or several slices
- Slices are self-contained
- Slices are a sequence of macroblocks
- Macroblocks:
 - Basic syntax & processing unit
 - Contains 16x16 luma samples and 2 x 8x8 chroma samples
 - Macroblocks within a slice depend on each other
 - Macroblocks can be further partitioned

SI	ice	#0				
SI	ice	#1				
SI	ice	#2	2			

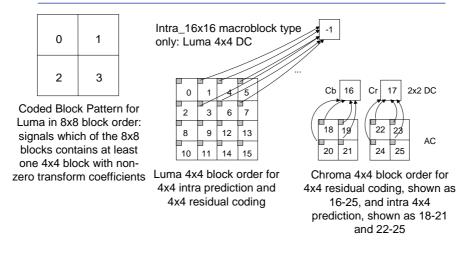

Flexible Macroblock Ordering (FMO)

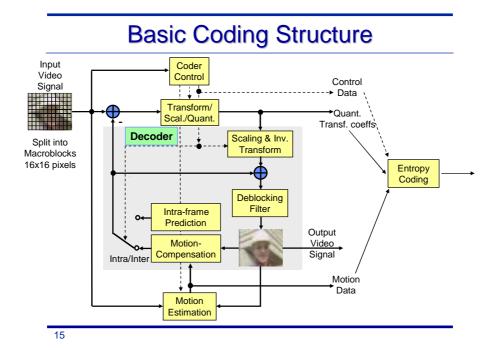
- Slice Group:
 - Pattern of macroblocks defined by a Macroblock allocation map
 - A slice group may contain 1 to several slices
- Macroblock allocation map types:
 - Interleaved slices
 - Dispersed macroblock allocation
 - Explicitly assign a slice group to each macroblock location in raster scan order
 - One or more "foreground" slice groups and a "leftover" slice group

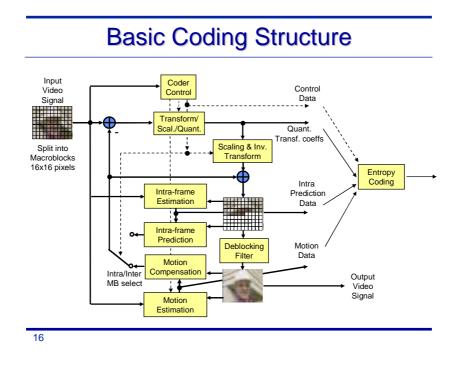
		lior	e G	ro	n	#0					
	3			10	μp	#0					
				-							
				-5	IICE	e G I	iro	up	#1		
		-					-				
		Sli	ce	Gr	ou	р#	2-				
		S	lice	e G	iro	up	#0				
						É					
		-S	lice	e G	ro	up	#1				
	_										L
		ice			Sli	ce	Gr	ou	p #	1	
G	ro	up	#0								
		_	Slic	e (Gro	auc	#2	2—			
			-	-	-	1	F-	-			


Interlaced Processing

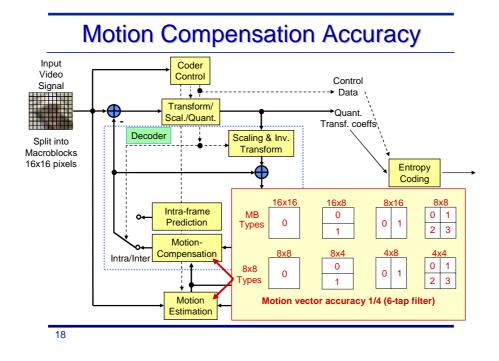
- Field coding: each field is coded as a separate picture using fields for motion compensation
- Frame coding:
 - *Type 1*: the complete frame is coded as a separate picture
 - *Type 2*: the frame is scanned as macroblock pairs, for each macroblock pair: switch between frame and field coding



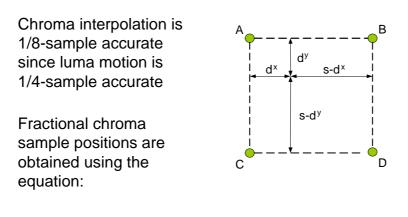

12

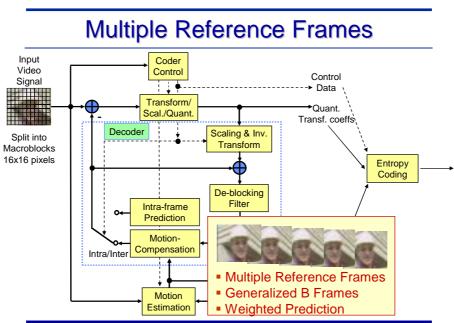

Macroblock-Based Frame/Field Adaptive Coding

Scanning of a Macroblock

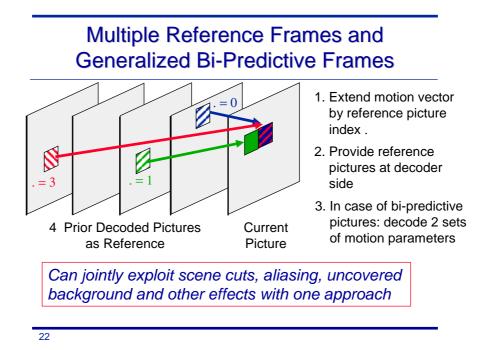


Common Elements with other Standards

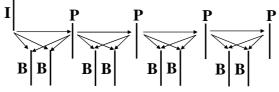

- Macroblocks: 16x16 luma + 2 x 8x8 chroma samples
- Input: Association of luma and chroma and conventional sub-sampling of chroma (4:2:0)
- Block motion displacement
- Motion vectors over picture boundaries
- Variable block-size motion
- Block transforms
- Scalar quantization
- I, P, and B coding types


Quarter Sample Luma Interpolation

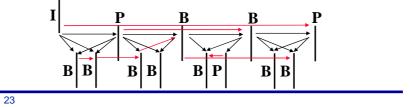
- A aa B Half sample positions are obtained by C bb D applying a 6-tap filter with tap values: GabcH defg Е F 1 J (1, -5, 20, 20, -5, 1) сс dd ee ff k m n p q r M s к L N Ρ Q Quarter sample positions are obtained R gg S by averaging samples at integer and half T hh U sample positions
 - full sample reference positions
 fractional sample positions

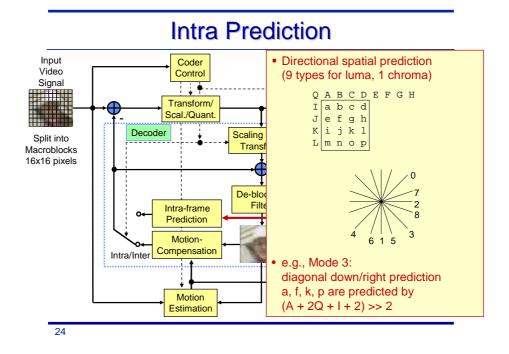

Chroma Sample Interpolation

 $v = ((s-d^{x})(s-d^{y})A + d^{x}(s-d^{y})B + (s-d^{x})d^{y}C + d^{x}d^{y}D + s^{2}/2)/s^{2}$



21




New Types of Temporal Referencing

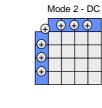
Known dependencies (MPEG-1, MPEG-2, etc.)

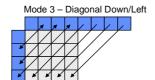
- New types of dependencies:
 - Referencing order and display order are decoupled
 - · Referencing ability and picture type are decoupled

Weighted Prediction

- In addition to shifting in spatial position, and selecting from among multiple reference pictures, each region's prediction sample values can be
 - multiplied by a weight, and
 - given an additive offset
- Some key uses:
 - Improved efficiency for B coding, e.g.,
 - accelerating motion,
 - multiple non-reference B temporally between reference pics
 - Excels at representation of fades:
 - fade-in
 - fade-out
 - cross-fade from scene-to-scene
- Encoder can apply this to both P and B prediction types

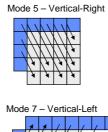
Spatial prediction using surrounding "available" samples


- Available samples are...
 - Previously reconstructed within the same slice at the decoder
 - Inside the same slice
- Luma intra prediction either:
 - Single prediction for entire 16x16 macroblock
 4 modes (vertical, horizontal, DC, planar)
 - 16 individual predictions of 4x4 blocks
 - 9 modes (DC, 8 directional)
- Chroma intra prediction:
 - Single prediction type for both 8x8 regions
 - 4 modes (vertical, horizontal, DC, planar)



4x4 Intra Prediction Directions

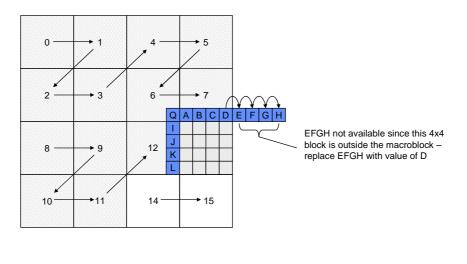
Μ	ode	91	- H	oriz	ont	al
	-				* *	
	_				•	
	-				*	

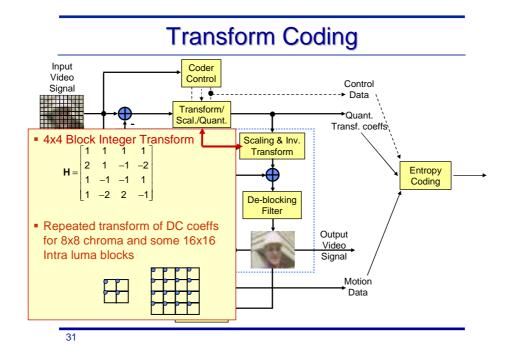


Mod	Mode 4 – Diagonal Down/Right									
			/							
		$\overline{\ }$	$\overline{\ }$	$\overline{\ }$	×					
		\geq	$\overline{\ }$	$\overline{\ }$	×					
		\geq	$\overline{\ }$	$\overline{\ }$	×					
		×	7	×	×					

28

4x4 Intra Prediction Directions


Mode 6 - Horizontal-Down


~	-	/		
1	\square	\Box		*
//	\square	\Box		*
//	\square	\Box	-	
	1	4	-	*

Mode 8 - Horizontal-Up

		ѫ		×	
*		\langle	$\left(\right)$	*	
*		\backslash		ѫ	
/	\sim	\sim	\square	*	
e				•	

4x4 Boundary Conditions

Integer Transforms (1)

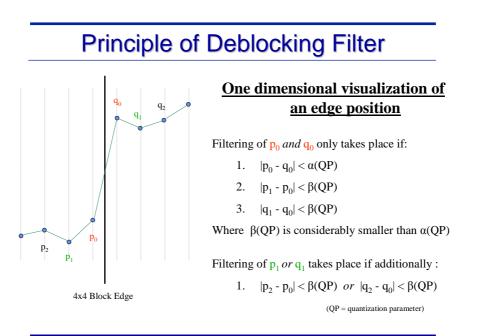
Separable transform of a block B_{4x4} of size 4x4

 $\mathbf{C}_{4x4} = \mathbf{T}_{v} \bullet \mathbf{B}_{4x4} \bullet \mathbf{T}_{h}^{T}$

• $T_{\rm h}, T_{\rm v}$: horizontal and vertical transform matrix

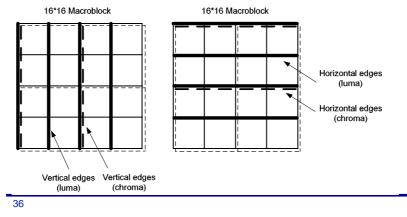
$$\mathbf{T}_{v} = \mathbf{T}_{h} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix}$$

- 4x4 transform matrix:
 - Easy implementation (adds and shifts)
 - · Different norms for even and odd rows of the matrix


32

Quantization of Transform Coefficients

- Logarithmic step size control
- Smaller step size for chroma (per H.263 Annex T)
- Extended range of step sizes
- Can change to any step size at macroblock level
- Quantization reconstruction is one multiply, one add, one shift


Deblocking Filter

- Improves subjective visual and objective quality of the decoded picture
- Significantly superior to post filtering
- Filtering affects the edges of the 4x4 block structure
- Highly content adaptive filtering procedure mainly removes blocking artifacts and does not unnecessarily blur the visual content
 - On slice level, the global filtering strength can be adjusted to the individual characteristics of the video sequence
 - On edge level, filtering strength is made dependent on inter/intra, motion, and coded residuals
 - On sample level, quantizer dependent thresholds can turn off filtering for every individual sample
 - Specially strong filter for macroblocks with very flat characteristics almost removes "tiling artifacts"

Order of Filtering

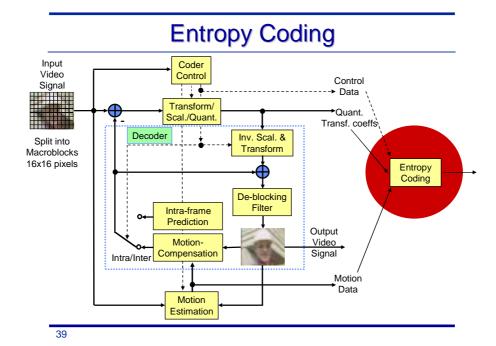
- Filtering can be done on a macroblock basis that is, immediately after a macroblock is decoded .
- First, the vertical edges are filtered then the horizontal edges
- The bottom row and right column of a macroblock are filtered when decoding the corresponding adjacent macroblocks .

Deblocking: Subjective Result for Intra

Highly compressed first decoded intra picture at a data rate of 0.28 bit/sample

1) Without Filter

Deblocking: Subjective Result for Inter

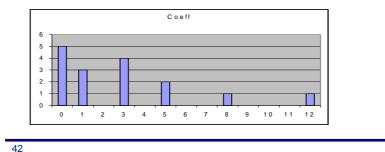

Highly compressed decoded inter picture

1) Without Filter

2) with H264/AVC Deblocking

Variable Length Coding

- Exp-Golomb code is used universally for almost all symbols except for transform coefficients
- Context adaptive VLCs for coding of transform coefficients
 - No end-of-block, but number of coefficients is decoded
 - · Coefficients are scanned backwards
 - Contexts are built dependent on transform coefficients


40

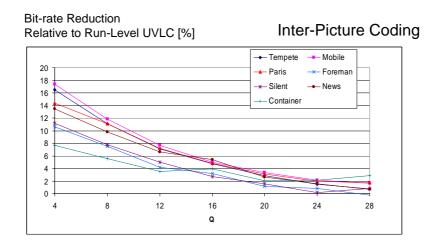
Context Adaptive VLC (CAVLC)

- Transform coefficients are coded with the following elements:
 - Number of non-zero coefficients.
 - Levels and signs for all non-zero coefficients.
 - Total number of zeros before last non-zero coefficient.
 - Run before each non-zero coefficient

Number of Coefficients/Trailing "1s"

- Typically the last non-zero coefficients have |Level | = 1
- The number of non-zero coefficients (example: N=6) and number of "Trailing 1s" (T1s=2) are coded in a combined symbol
 - In this way typically > 50% of the coefficients are signalled as T1s and no other level information than sign is then needed for these coefficients.
- The VLC table to use is adaptively chosen based on the number of coefficients in neighboring blocks.

Reverse Scanning and Level Coding

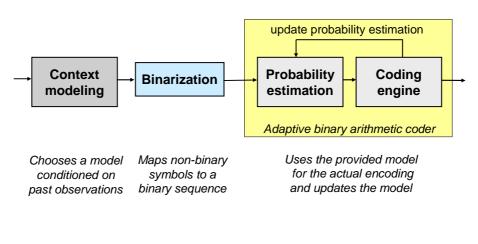

- In a forward scan coefficients levels typically start with high values and decrease towards 1 (Trailing "1s")
- Therefore the value of the last nonzero coefficient is more accurately predictable than for the first one.
- Efficient adaptation is obtained by
 - Start with a default VLC table for the first coefficient in the reverse scan
 - The table to use for the next coefficient is then selected based on the context as adapted by previously coded levels in the reverse scan.
 - To adapt to a wide variety of input statistics there are 7 structured VLC tables to choose between.

Run Information: TotalZeros and RunBefore

- TotalZeros
 - This is the total number of zeros before the last nonzero coefficient in a forward scan.
 - Since the number of non-zero coefficients (N) is already known, the maximum value of TotalZeros is: 16 – N, and a VLC of appropriate length can be used.
- RunBefore
 - Finally, in a reverse scan order, the run before each non-zero coefficient is coded.
 - Since this run can take on only a certain set of values, depending on TotalZeros and runs coded so far, a VLC with optimal length and statistics can always be used.

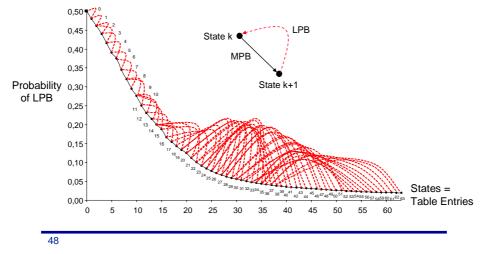
44

Bit-Rate Savings for CAVLC



Context-based Adaptive Binary Arithmetic Codes (CABAC)

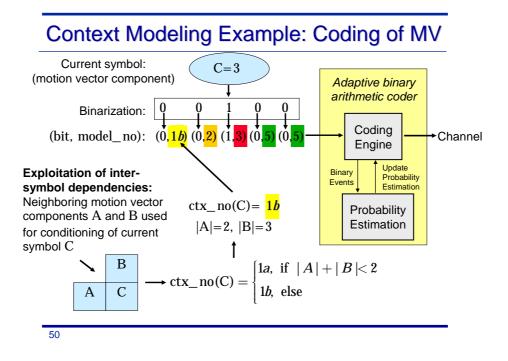
- Usage of adaptive probability models for most symbols
- Exploiting symbol correlations by using contexts
- Restriction to binary arithmetic coding
 - Simple and fast adaptation mechanism
 - Fast binary arithmetic codec based on table look-ups and shifts only


46

CABAC: Technical Overview

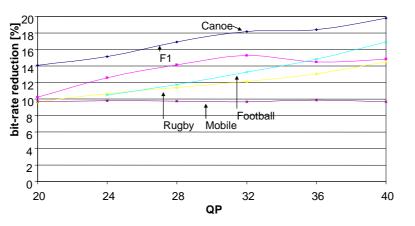
Probability Estimation

- Probability estimation is realized via table look-up
- Table contains states and transition rules upon receipt of MPB or LPB



Symbol	Binarization
0	1
1	0 1
2	001
3	0001
4	00001
5	000001
6	0000001
Bin_num	1234567

Binarization


Mapping to a binary sequence, e.g., using the unary code tree:

- Applies to all non-binary syntax elements except for macroblock type
- Ease of implementation
- Discriminate between binary decisions (bins) by their position in the binary sequence
- ⇒ Usage of different models for different bin_num in the tablebased arithmetic coder

Bit-Rate Savings for CABAC

Average Bit-Rate Savings CABAC vs. VLC/CAVLC for SD interlace sequences

Coder Control

- Coder control is a non-normative part of H.264/AVC
- Goal within standardization process: demonstrate H.264/AVC performance and make design decisions using common conditions
- Choose coding parameters at encoder side "What part of the video signal should be coded using what method and parameter settings?"
- Constrained problem:

$$\min_{\mathbf{p}} D(\mathbf{p}) \quad \text{s.t.} \quad R(\mathbf{p}) = R_T$$

- D Distortion
- R Rate
- R_T Target rate
- p Parameter Vector
- Unconstrained Lagrangian formulation:

$$\mathbf{p}_{opt} = \arg\min_{\mathbf{p}} \{ D(\mathbf{p}) + \cdot \bullet R(\mathbf{p}) \}$$

with λ controlling the rate-distortion trade-off

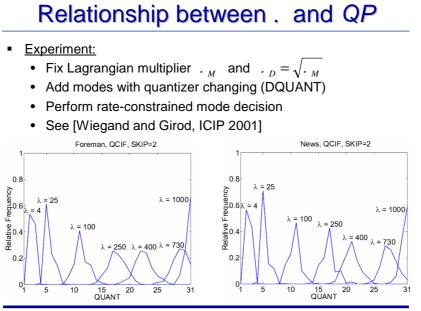
52

Rate-Constrained Mode Decision

• For given values of Q and λ_M , minimize

 $D_2(M \mid Q) + \dots M \bullet R(M \mid Q)$

- M Evaluated macroblock mode out of a set of possible modes
- Q Value of quantizer control parameter for transform coefficients
- λ_M Lagrange parameter for mode decision
- D_2 Sum of squared differences (luma & chroma)
- \tilde{R} Number of bits associated with header, motion, transform coefficients
- Set of possible macroblock modes
 - Dependent on frame type (e.g. I, P, B)
 - For instance, *P* frame in H.264|AVC:
 - M. {SKIP, INTER_16x16, INTER_16x8, INTER_8x16, INTER_8x8, INTRA_4x4, INTRA_16x16}
- Prior to macroblock mode decision: sub macroblock (8x8) mode decision


Rate-Constrained Motion Estimation

 Integer-pixel motion search as well as fractional sample search is performed by minimizing

 $D_1(\mathbf{m}) + \sum_{D} \bullet R(\mathbf{m} \mid \mathbf{p}_m)$

- ${\bm m}$ Motion vector containing spatial displacement and picture reference parameter Δ
- **p**_m Predictor for motion vector
- λ_{D} $\,$ Lagrange parameter for motion estimation
- D₁ Sum of absolute differences (luminance)
- R Number of bits associated with motion information

Relationship between . and QP

• H.263 / MPEG-4p2:

$$M_{M} = 0.85 \bullet QP_{H.263}^{2}$$
$$M_{D} = \sqrt{M_{M}}$$

• H.264/AVC:

$$QP_{H.263} \quad 2^{(QP-12)/6}$$
$$\implies \cdot_M = 0.85 \cdot 2^{(QP-12)/3}$$
$$\cdot_D = \sqrt{\cdot_M}$$

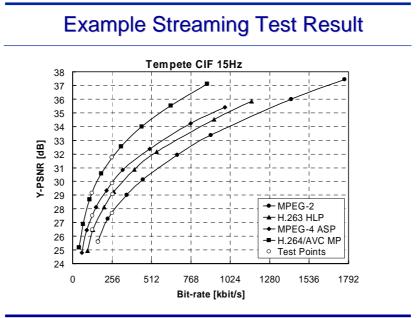
56

A Comparison of Performance

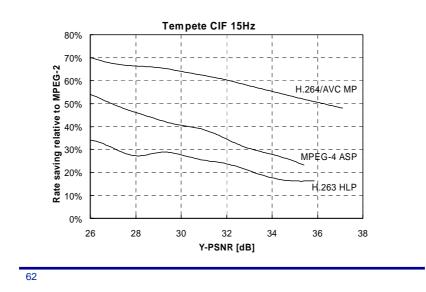
- Test of different standards (Trans. on Circuits and Systems for Video Technology, July 2003, Wiegand *et al*)
- Using same rate-distortion optimization techniques for all codecs
- "Streaming" test: High-latency (included B frames)
- "Real-time conversation" test: No B frames
- "Entertainment-quality application" test: SD & HD resolutions
- Several video sequences for each test
- Compare four codecs:
 - MPEG-2 (in Main profile high-latency/streaming test only)
 - H.263 (High-Latency profile, Conversational High-Compression profile, Baseline profile)
 - MPEG-4 Visual (Simple profile and Advanced Simple profile with & without B pictures)
 - H.264/AVC (Main profile and Baseline profile)

Caution: Your Mileage Will Vary

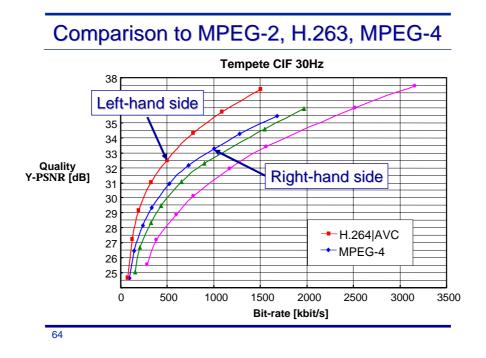
- Theoretical performance versus actual implementation quality is a serious consideration
- Need tests on larger body of material for strong statistical significance
- PSNR analysis and perceptual quality can differ


58

Test Set for Streaming Applications

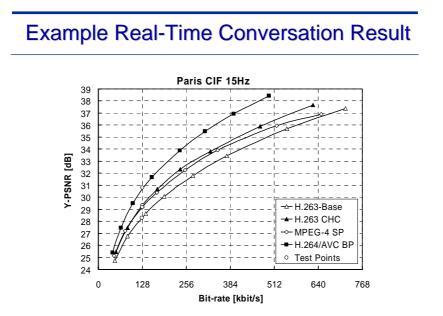

Name	Resolution	Duration	Characteristics
Foreman	QCIF	10 sec.	Fast camera and content motion with pan at the end
Container Ship	QCIF	10 sec.	Still camera on slow moving scene
News	QCIF	10 sec.	Still camera on human subjects with synthetic background
Tempete	QCIF	8.67 sec.	Camera zoom; spatial detail; fast random motion
Bus	CIF	5 sec.	Fast translational motion and camera panning; moderate spatial detail
Flower Garden	CIF	8.33 sec.	Slow and steady camera panning over landscape; spatial and color detail
Mobile & Calendar	CIF	8.33 sec.	Slow panning and zooming; complex motion; high spatial and color detail
Tempete	CIF	8.67 sec.	Camera zoom; spatial detail; fast random motion

Test Results for Streaming Application

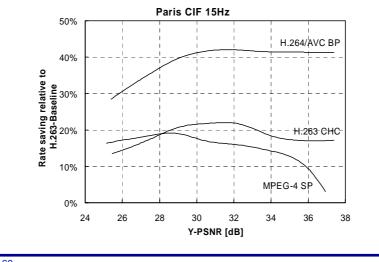

	Average bit-rate savings relative to:						
Coder	MPEG-4 ASP	H.263 HLP	MPEG-2				
H.264/AVC MP	37.44%	47.58%	63.57%				
MPEG-4 ASP	-	16.65%	42.95%				
H.263 HLP	-	-	30.61%				

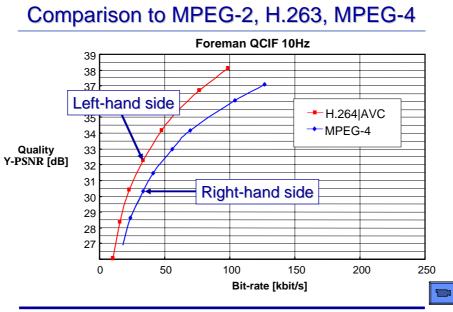
Example Streaming Test Result

Comparison to MPEG-4 ASP Tempete CIF 30Hz ???-hand side Quality Y-PSNR [dB] ???-hand side - H.264|AVC MPEG-4 Bit-rate [kbit/s]



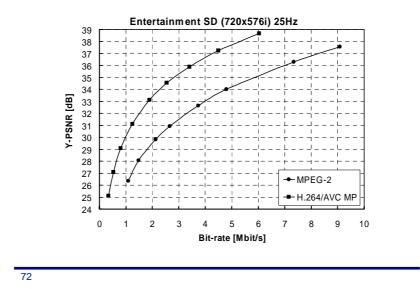
Test Set for Real-Time Conversation


Name	Resolution	Duration	Characteristics
Akiyo	QCIF	10 sec.	Still camera on human subject with synthetic background
Foreman	QCIF	10 sec.	Fast camera and content motion with pan at the end
Silent	QCIF	10 sec.	Still camera but fast moving subject
Mother & Daughter	QCIF	10 sec.	Still camera on human subjects
Carphone	CIF	10 sec.	Fast camera and content motion with landscape passing
Foreman	CIF	10 sec.	Fast camera and content motion with pan at the end
Paris	CIF	10 sec.	Still camera on human subjects; typical videoconferencing content
Sean	CIF	10 sec.	Still camera on human subject with synthetic background


Test Results for Real-Time Conversation

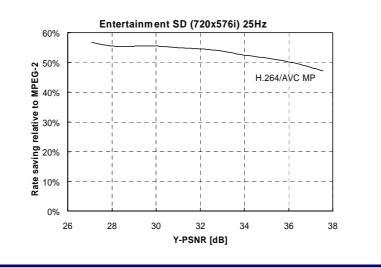
	Average bit-rate savings relative to:				
Coder	H.263 CHC	MPEG-4 SP	H.263 Base		
H.264/AVC BP	27.69%	29.37%	40.59%		
H.263 CHC	-	2.04%	17.63%		
MPEG-4 SP	-	-	15.69%		

Example Real-Time Test Result


Test Set for Entertainment-Quality Applications

Name	Resolution	Duration	Characteristics
Harp & Piano	720· 576i	8.8 sec.	Fast camera zoom; local motion
Basketball	720· 576i	9.92 sec.	Fast camera and content motion; high spatial detail
Entertainment	720· 576i	10 sec.	Camera and content motion; spatial detail
News	720· 576i	10 sec.	Scene cut between slow and fast moving scene
Shuttle Start	1280· 720p	10 sec.	Jiggling camera, low contrast, lighting change
Sailormen	1280∙ 720p	10 sec.	Translational and random motion; high spatial detail
Night	1280· 720p	7.67 sec.	Static camera, fast complex motion
Preakness	1280· 720p	10 sec.	Camera zoom, highly complex motion, high spatial detail

70


Test Results Entertainment-Quality Applications

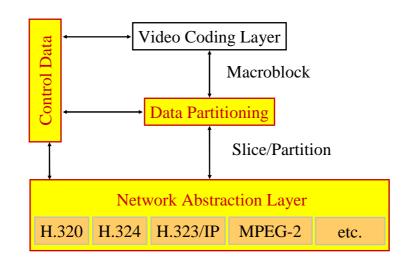
	Average bit-rate savings relative to:
Coder	MPEG-2
H.264/AVC MP	45%

Example Entertainment-Quality Applications Result

Example Entertainment-Quality Applications Result

More Results ?

The various standard decoders together with bitstreams of all test cases presented in this paper can be down-loaded at


ftp://ftp.hhi.de/ieee-tcsvt/

More Details ?

T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan: "Rate-Constrained Coder Control and Comparison of Video Coding Standards," in *IEEE Transactions on Circuits and Systems for Video Technology*, July 2003.

74

H.264/AVC Layer Structure

Networks and Applications

- Broadcast over cable, satellite, DSL, terrestrial, etc.
- Interactive or serial storage on optical and magnetic devices, DVD, etc.
- Conversational services over ISDN, Ethernet, LAN, DSL Wireless Networks, modems, etc. or a mixture of several.
- Video-on-demand or multimedia streaming services over ISDN, DSL Ethernet, LAN, Wireless Networks, etc.
- Multimedia Messaging Services (MMS) over ISDN, DSL, Ethernet, LAN, Wireless Network, etc.
- New applications over existing and future networks!

How to handle this variety of applications and networks?

76

Network Abstraction Layer

Mapping of H.264/AVC video to transport layers like

- RTP/IP for any kind of real-time wireline and wireless Internet services (conversational and streaming)
- File formats, e.g. ISO MP4 for storage and MMS
- H.32X for wireline and wireless conversational services
- MPEG-2 systems for broadcasting services, etc.

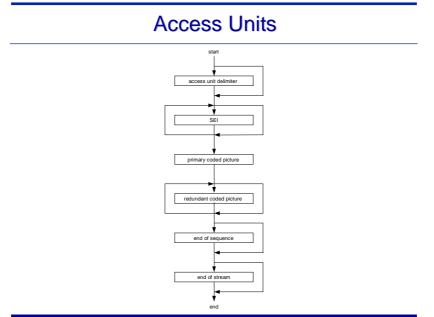
Outside the scope the H.264/AVC standardization, but awareness!

Provision of appropriate mechanisms and interfaces

- Provide mapping to network and to facilitate gateway design
- Key Concepts: Parameter Sets, Network Abstraction Layer (NAL) Units, NAL unit and byte-stream formats

Completely within the scope of H.264/AVC standardization

Network Abstraction Layer (NAL) Units


Constraints

- Many relevant networks are packet switched networks
- · Mapping packets to streams is easier than vice versa
- Undetected bit-errors practically do not exist on the application layer

Architecture: NAL units as the transport entity

- NAL units may be mapped into a bit stream...
- ... or forwarded directly by a packet network
- NAL units are self-contained (independently decodable)
- The decoding process assumes NAL units in decoding order
- The integrity of NAL units is signaled by the correct size (conveyed externally) and the *forbidden_bit* set to 0.

78

NAL Unit Format and Types

NAL unit header NAL unit payload

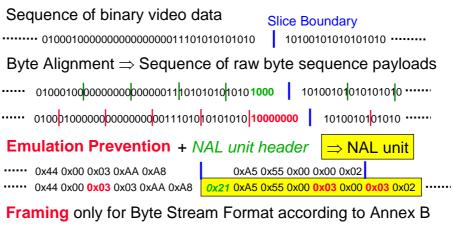
NAL unit header: 1 byte consisting of

- forbidden_bit (1 bit): may be used to signal that a NAL unit is corrupt (useful e.g. for decoders capable to handle bit errors)
- nal_storage_idc (2 bit): signals relative importance, and if the picture is stored in the reference picture buffer
- nal_unit_type (5 bit): signals 1 of 10 different NAL unit types
 - Coded slice (regular VCL data),
 - Coded data partition A, B, C (DPA, DPB, DPC),
 - Instantaneous decoder refresh (IDR),
 - Supplemental enhancement information (SEI),
 - Sequence and picture parameter set (SPS, PPS),
 - Picture delimiter (PD) and filler data (FD).

NAL unit payload: an emulation prevented sequence of bytes.

80

RTP Payload Format for H.264/AVC


- The specification of an RTP payload format is on the way within the IETF AVT
- The draft also follows the goals "back-to-basic" and simple syntax specification
- RTP payload specification expects that NAL units are transmitted directly as the RTP payload
- Additional concept of aggregation packets is introduced to aggregate more than one NAL unit into a single RTP packet (helpful for gateway designs between networks with different MTU size requirements)
- RTP time stamp matches presentation time stamp using a fixed 90 kHz clock
- Open Issue: media unaware fragmentation

Byte-stream Format for H.264/AVC

- Not all transport protocols are packet-based, e.g. MPEG-2 systems over S/C/T, H.320 over ISDN
- H.264/AVC standard defines a byte-stream format to transmit a sequence of NAL units as an ordered stream of bytes
- NAL unit boundaries need to be identified to obtain NAL units with correct size to guarantee integrity
- A byte-oriented HDLC-like framing including start codes (1or 2 bytes) and emulation prevention is specified
- For simplified gateway operation, the emulation prevention on byte basis is applied to all raw byte sequence payloads (RBSPs).

82

Byte Alignment, Emulation Prevention and Framing

····· 0x44 0x00 0x03 0x03 0xAA 0xA8 0x00 0x01 0x21 0xA5 0x55 0x00 0x03 0x00 0x03 0x02 ······

Access Unit Delimiter

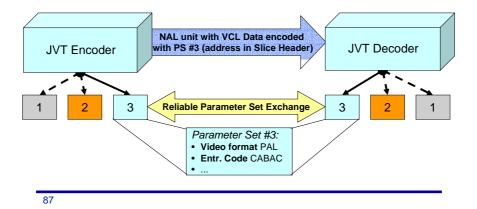
- Observation: No Picture Header and no Picture Type
 - No need for either in many applications
 - Their existence harms the performance in some applications
- But: some applications need a picture type
 - Primarily Storage Applications, for trick modes
- Hence: Introduction of the access unit delimiter
 - Optional tool
 - Signals the picture type and whether the picture is stored in the reference frame buffer
 - Inserted before the first NAL unit of a picture in decoding order, hence signals implicitly the boundary between pictures

84

Data Partitioning NAL Units 1/2

- H.264 | AVC contains Data Partitioning w/ 3 Partitions
 - Data partition A (DPA) contains header info
 - Slice header
 - All macroblock header information
 - Motion vectors
 - Data partition B (DPB) contains intra texture info – Intra CBPs
 - Intra coefficients
 - Data partition C (DPC) contains inter texture info – Inter CBPs
 - Inter Coefficients
- When DP is used, all partitions are in separate NAL units

Data Partitioning NAL Units 2/2


- Properties of the Partition Types
 - DPA is (perceptually) more important than DPB
 - DPB cleans up error propagation, DPC does not
- Transport DPA w/ higher QoS than DPB, DPC
 - In lossy transmission environments typically leads to overall higher reconstructed picture quality at the same bit rate
 - Most packet networks contain some prioritization

 Sub-Transport and Transport level, e.g. in 3GPP networks or when using DiffServ in IP
 - Application Layer protection
 - Packet Duplication
 - Packet-based FEC

86

Parameter Set Concept

- Sequence, random access, picture headers can get lost
- Solutions in previous standards: duplication of headers
- H.264/AVC coding applies a new concept: parameter sets

Parameter Set Discussion

- Parameter Set: Information relevant to more than one slice
 - Information traditionally found in sequence / picture header
 - Most of this information is static, hence transmission of a reference is sufficient
 - Problem: picture-dynamic info, namely timing (TR)
 - Solution: picture-dynamic info in every slice
 Overhead is smaller than one would expect
- Parameter Sets are conveyed out-of-band and reliable
 - No corruption/synchronization problems
 - Aligned with closed control application
 - · Need in-band transmission mechanism for broadcast

88

Nested Parameter Sets

- Each slice references a picture parameter set (PPS) to be used for decoding its VCL data:
 - PPS selected by short variable length codeword transported in slice header
 - Contains, e.g. entropy coding mode, FMO parameters, quantization initialization, weighted prediction indications, etc.
 - PPS reference can change between pictures
- Each PPS references a sequence parameter set (SPS)
 - SPS is referenced only in the PPS
 - Contains, e.g. profile/level indication, display parameters, timing concept issues, etc.
 - · SPS reference can change only on IDR pictures

Establishment and Updates of Parameter Sets

- If possible, SPS and PPS should be established and updated reliably and out-of-band
 - Typically established during capability exchange (SIP, SDP, H.245) or in session announcement,
 - · Updates also possible by control protocols,
 - SPS and PPS could be pre-defined, e.g. in multicast or broadcast applications
- Special NAL unit types are specified to setup and change SPS and PPS in-band
 - Intended ONLY for those applications where no control protocol is available
 - · Allows to have self-contained byte-streams
 - Use of in-band and out-of-band Parameter Set transmission mutually exclusive (to avoid sync problems)

90

Supplemental Enhancement Information (SEI)

- Supplemental Enhancement information NAL unit contains synchronously delivered information that is not necessary to decode VCL data correctly
- SEI is helpful for practical decoding or presentation purpose
- An SEI message is associated with the next slice or data partitioning RBSP in decoding order
- Examples are
 - Display information, absolute timing, etc.
 - Scene transition information (fades, dissolve, etc.)
 - Control info for videoconferencing (e.g. FPR)
 - Error resilience issues, e.g. repetition of reference picture buffer management information
 - Arbitrary user data, etc.

Summarizing NAL

- In H.264/AVC, the transport of video has been taken into account from the very beginning
- Flexibility for integration to different transport protocols is provided
- Common structure based on NAL units and parameter sets is maintained for simple gateway operations
- Mapping to MPEG-2 transport stream is provided via byte-stream format
- On the way are payload specification to different transport protocols, e.g. to RTP/IP

92

Grouping of Capabilities into Profiles

- Three profiles now: Baseline, Main, and Extended
 - Baseline (e.g., Videoconferencing & Wireless)
 - I and P picture types (not B)
 - In-loop deblocking filter
 - 1/4-sample motion compensation
 - Tree-structured motion segmentation down to 4x4 block size
 - VLC-based entropy coding (CAVLC)
 - Some enhanced error resilience features
 - Flexible macroblock ordering/arbitrary slice ordering
 - Redundant slices
 - Note: No support for interlaced video in Baseline

Non-Baseline Profiles

- Main Profile (esp. Broadcast/Entertainment)
 - All Baseline features except enhanced error resilience features
 - B pictures
 - Adaptive weighting for B and P picture prediction
 - Picture and MB-level frame/field switching
 - CABAC
 - Note: Main is not exactly a superset of Baseline
 - Extended Profile (esp. Streaming/Internet)
 - All Baseline features
 - B pictures
 - Adaptive weighting for B and P picture prediction
 - Picture and MB-level frame/field switching
 - More error resilience: Data partitioning
 - SP/SI switching pictures
 - Note: Extended is a superset of Baseline (but not of Main)

94

Complexity of Codec Design

- Codec design includes relaxation of traditional bounds on complexity (memory & computation) – rough guess 3x decoding power relative to MPEG-2, 4x encoding
- Problem areas:
 - Smaller block sizes for motion compensation (cache access issues)
 - Longer filters for motion compensation (more memory access)
 - Multi-frame motion compensation (more memory for reference frame storage)
 - More segmentations of macroblock to choose from (more searching in the encoder)
 - · More methods of predicting intra data (more searching)
 - Arithmetic coding (adaptivity, computation on output bits)

Implementations: The Early Reports

- UB Video (JVT-C148) CIF resolution on 800 MHz laptop
 - Encode: 49 fps
 - · Decode: 137 fps
 - Encode+Decode: 36 fps
 - Better quality than R-D optimized H.263+ Profile 3 (IJKT) while using 25% higher rate and low-delay rate control
- Videolocus/LSI (JVT-D023) SDTV resolution .
 - · 30 fps encode on P4 2 GHz with hardware assist
 - ٠ Decode on P3 1 GHz laptop (no hardware assist)
 - No B frames, no CABAC (approx baseline)
- Tandberg Videoconferencing
 - All Tandberg end-points ship with H.264/AVC since July 14, '03
- Reference software (super slow)
- Others: HHI, Deutsche Telekom, Broadcom, Nokia, Motorola, &c
- Caution: These are preliminary implementation reports only mostly involving incomplete implementations of non-final draft designs

96

Companies Publicly Known to be Doing **Preliminary Implementation Work**

- Amphion British Telecom
- Broadcom (chip)
- Conexant (chipset for STB) DemoGraFX (with bit precision extension)
- Deutsche Telekom
- Envivio
- Equator Harmonic (filtering and motion estimation)
- HHI (PC & DSP encode & decode; demos)
- iVast
- LSI Logic (chip, plus Videolocus acquisition demoing real-time FPGA+P4 encode, P4 dec)
- Mainconcept Mobile Video Imaging
- Modulus Video Moonlight Cordless
- Motorola
- Nokia
- PixelTools
- PixSil Technology Polycom (videoconferencing & MCUs)

- Sand Video (demoed 2 Xilinx FPGA decoder, encode/decode & decode-only chips to fab in '03) Sony (encode & decode, software & hardware, including PlayStation Portable 2004 & videoconferencing systems)
- ST Micro (decoder chip in '03)
- Tandberg (videoconferencing shipping in all end points and as software upgrade) Thomson TI (DSP partner with UBV for one of two UBV real-time implemenations)
- Toshiba UB Video (demoed real-time encode and decode, software and DSP implementations) Vanguard Software Solutions (s/w, enc/dec)
- VCON
- CAUTION: All such information should be considered preliminary and should not be considered to be product announcements only preliminary implementation work. It will be awhile before robust interoperable conforming implementations exist.

Conclusions

- Video coding layer is based on hybrid video coding and similar in spirit to other standards but with important differences
- New key features are:
 - Enhanced motion compensation
 - Small blocks for transform coding
 - Improved deblocking filter
 - Enhanced entropy coding
- Bit-rate savings around 50 % against any other standard for the same perceptual quality (especially for higher-latency applications allowing B pictures)
- Standard of both ITU-T VCEG and ISO/IEC MPEG

99